

Lecture Notes in Computer Science 5053
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

René Meier Sotirios Terzis (Eds.)

Distributed
Applications and
Interoperable Systems

8th IFIP WG 6.1 International Conference, DAIS 2008
Oslo, Norway, June 4-6, 2008
Proceedings

13

Volume Editors

René Meier
Trinity College Dublin
School of Computer Science and Statistics
Dublin 2, Ireland
E-mail: rene.meier@cs.tcd.ie

Sotirios Terzis
University of Strathclyde
Department of Computer and Information Science
Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH, UK
E-mail: Sotirios.Terzis@cis.strath.ac.uk

Library of Congress Control Number: 2008927527

CR Subject Classification (1998): D.2, C.2.4, I.2.11, D.4, H.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-68639-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68639-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg, Austria 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12275939 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of DAIS 2008, the 8th IFIP International
Conference on Distributed Applications and Interoperable Systems. The confer-
ence was held in Oslo, Norway during June 4–6, 2008 as part of the DisCoTec
(Distributed Object Techniques) federated conference, in conjunction with the
10th International Conference on Coordination Models and Languages (COOR-
DINATION) and the 10th IFIP International Conference on Formal Methods
for Open Object-Based Distributed Systems (FMOODS). The conference was
sponsored by IFIP (International Federation for Information Processing) and
was organized by the IFIP Working Group 6.1.

Distributed applications and interoperable systems have become an integral
part of everyday living and hence part of the socio-economic ecosystem of our
human environment. With such pervasive distribution of software systems across
a multitude of heterogeneous environments and user domains, distributed appli-
cations must support seamless provision of services, as well as service evolution
and adaptability to ensure long-term sustainability. This support must go be-
yond the provision of individual services in isolation, towards systems in which
such services can interoperate and be integrated into the everyday environment
catering for the changing needs of their users.

The conference papers aimed to address the following questions:

– How can our distributed applications integrate into global environments?
– How do we ensure the seamless provision of services in these global

environments?
– How do we make our interoperable systems adaptable and evolvable in the

face of widespread changes to their environments?
– How can distributed applications and interoperable systems capitalize and

exploit future trends and the changing user demographic?

The conference program comprised research contributions addressing ser-
vice orientation issues; quality of service (QoS) management and composition
in service-oriented architectures; dependability and reliability issues for Web
services, distributed real-time embedded issues, component-based systems and
distributed applications; analysis and management of peer-to-peer overlays; the
challenges of pervasive computing systems; dynamic adaptation in smart envi-
ronments, peer-to-peer systems and Web services; model-driven design, devel-
opment and instrumentation; protocols and interactions for components, Web
services and gossip-based systems. This year, the technical program of DAIS
drew from 66 submissions, accepting for presentation 19 research papers and 5
work-in-progress papers. All submitted papers were reviewed by at least three
reviewers, coordinated by our International Program Committee. The confer-
ence program also included three keynote addresses, in conjunction with the

VI Preface

other two DisCoTec conferences, from Alexander L. Wolf, Professor at the De-
partment of Computing, Imperial College London, titled “New Uses of Simula-
tion in Distributed Systems Engineering,” Matt Welsh, Associate Professor of
Computer Science at the School of Engineering and Applied Sciences, Harvard
University, titled “Fiji: A Platform for Data-Intensive Sensor Network Applica-
tions,” and Andrew Myers, Associate Professor at the Department of Computer
Science, Cornell University, titled “Guiding Distributed Systems Synthesis with
Language-Based Security Policies.”

We would like to take this opportunity to thank the numerous people whose
work made this conference possible. We wish to express our deepest gratitude
to the authors of submitted papers, to all Program Committee members and
external reviewers for their participation in the paper review process, to Hartmut
König for publicity, to the DAIS Steering Committee for their advice, to the
University of Oslo for hosting DisCoTec, and to Frank Eliassen and Einar Broch
Johnsen for acting as the General Chairs of DisCoTec.

June 2008 René Meier
Sotirios Terzis

Conference Committees and Organization

Executive Committee

Conference Chairs Frank Eliassen (University of Oslo, Norway)
Einar Broch Johnsen (University of Oslo, Norway)

Program Chairs René Meier (Trinity College Dublin, Ireland)
Sotirios Terzis (University of Strathclyde, UK)

Publicity Chair Hartmut König (BTU Cottbus, Germany)

Steering Committee

Frank Eliassen University of Oslo, Norway
Kurt Geihs University of Kassel, Germany
Jadwiga Indulska University of Queensland, Australia
Hartmut König BTU Cottbus, Germany
Lea Kutvonen University of Helsinki, Finland
Alberto Montresor University of Trento, Italy
Elie Najm TELECOM ParisTech, France
Kerry Raymond Queensland University of Technology, Australia

Sponsoring Institutions

IFIP WG 6.1

Program Committee

N. Alonistioti University of Athens, Greece
D. Bakken Washington State University, USA
Y. Berbers Katholieke Universiteit Leuven, Belgium
A. Beresford University of Cambridge, UK
A. Beugnard TELECOM Bretagne, France
G. Blair Lancaster University, UK
A. Casimiro University of Lisbon, Portugal
I. Demeure TELECOM ParisTech, France
S. Dobson University College Dublin, Ireland
D. Donsez Université Joseph Fourier, France
N. Dulay Imperial College London, UK
F. Eliassen University of Oslo, Norway
P. Felber Université de Neuchâtel, Switzerland

VIII Organization

K. Geihs University of Kassel, Germany
N. Georgantas INRIA, France
R. Grønmo SINTEF ICT, Norway
D. Hagimont INP Toulouse, France
S. Hallsteinsen SINTEF ICT, Norway
P. Herrmann NTNU Trondheim, Norway
J. Indulska University of Queensland, Australia
R. Kapitza University of Erlangen-Nuremberg, Germany
H. König BTU Cottbus, Germany
R. Kroeger University of Applied Sciences, Wiesbaden, Germany
L. Kutvonen University of Helsinki, Finland
W. Lamersdorf University of Hamburg, Germany
M. Lawley Queensland University of Technology, Australia
P. Linington University of Kent, UK
C. Linnhoff-Popien University of Munich, Germany
K. Lund Norwegian Defence Research Establishment (FFI),

Norway
R. Meier Trinity College Dublin, Ireland
A. Montresor University of Trento, Italy
E. Najm TELECOM ParisTech, France
N. Narasimhan Motorola Labs, USA
R. Oliveira Universidade do Minho, Portugal
P. Pietzuch Imperial College London, UK
A. Puder San Francisco State University, USA
K. Raymond Queensland University of Technology, Australia
D. Schmidt Vanderbilt University, USA
T. Senivongse Chulalongkorn University, Thailand
K. Sere Åbo Akademi University, Finland
E. Tanter University of Chile, Chile
S. Terzis University of Strathclyde, UK

Additional Referees

D. Bade
U. Bareth
S. Bleul
G. Brataas
L. Braubach
J. Buisson
F. Campos
R. Cunningham
I. Dionysiou
V.S. Wold Eide
R.I. Ferguson
J. Fox

F. Fuchs
H. Gjermundrod
P. Grace
X. Grehant
I. Hamid
M. Ullah Khan
W. Maiden
P.H. Meland
A. Opitz
L. Petre
A. Pokahr
R. Rouvoy

M. Schiely
M. Schmid
A. Sousa
G. Treu
M. Wagner
T. Weise
D. Weiss
L. Wienhofen
R. Wishart
S. Zaplata

Table of Contents

Service Orientation

iSOAMM: An Independent SOA Maturity Model . 1
Christoph Rathfelder and Henning Groenda

Describing Component Collaboration Using Goal Sequences 16
Cyril Carrez, Jacqueline Floch, and Richard Sanders

Adaptive and Fault-Tolerant Service Composition in Peer-to-Peer
Systems . 30

Vivian Prinz, Florian Fuchs, Peter Ruppel, Christoph Gerdes, and
Alan Southall

QoS Management and Composition

Decentralised QoS-Management in Service Oriented Architectures 44
Markus Schmid and Reinhold Kroeger

QoS-Based Service Provision Schemes and Plan Durability in Service
Composition . 58

Koramit Pichanaharee and Twittie Senivongse

Dependability and Reliability

Towards Middleware for Fault-Tolerance in Distributed Real-Time and
Embedded Systems . 72

Jaiganesh Balasubramanian, Aniruddha Gokhale,
Douglas C. Schmidt, and Nanbor Wang

Using Object Replication for Building a Dependable Version Control
System . 86

Rüdiger Kapitza, Peter Baumann, and Hans P. Reiser

Recovery Mechanisms for Semantic Web Services . 100
Kevin Wiesner, Roman Vacuĺın, Martin Kollingbaum, and
Katia Sycara

A Multi-stage Approach for Reliable Dynamic Reconfigurations of
Component-Based Systems . 106

Pierre-Charles David, Marc Léger, Hervé Grall,
Thomas Ledoux, and Thierry Coupaye

X Table of Contents

Peer-to-Peer Overlays

Virtual Overlays: An Approach to the Management of Competing or
Collaborating Overlay Structures . 112

Paul M. Okanda, Sebastian Steinhauer, and Gordon Blair

Tree-Based Analysis of Mesh Overlays for Peer-to-Peer Streaming 126
Bartosz Biskupski, Marc Schiely, Pascal Felber, and René Meier

Managing Peer-to-Peer Live Streaming Applications 140
Raymond Cunningham, Bartosz Biskupski, and René Meier

Adaptation

Dynamic Adaptability for Smart Environments . 154
Daniel Retkowitz and Mark Stegelmann

Brokering Planning Metadata in a P2P Environment 168
Johannes Oudenstad, Romain Rouvoy, Frank Eliassen, and
Eli Gjørven

Adaptive Web Service Migration . 182
Holger Schmidt, Rüdiger Kapitza, Franz J. Hauck, and
Hans P. Reiser

Model-Driven Development

A Model-Driven Approach for Developing Adaptive Software
Systems . 196

Thomas Hamann, Gerald Hübsch, and Thomas Springer

Model-Based Performance Instrumentation of Distributed
Applications . 210

Jan Schaefer, Jeanne Stynes, and Reinhold Kroeger

Implementing a Data Distribution Variant with a Metamodel, Some
Models and a Transformation . 224

Eveline Kaboré and Antoine Beugnard

Components, Protocols and Interactions

Facilitating Gossip Programming with the GossipKit Framework 238
Shen Lin, François Täıani, and Gordon S. Blair

Cost-Efficient Deployment of Collaborating Components 253
Máté J. Csorba, Poul E. Heegaard, and Peter Herrmann

Table of Contents XI

STUNT Enhanced Java RMI . 269
Oliver Haase, Wolfgang Reiser, and Jürgen Wäsch

Facilitating Complex Web Service Interactions through a Tuplespace
Binding . 275

Daniel Wutke, Daniel Martin, and Frank Leymann

Perasive Computing

A Comprehensive Context Modeling Framework for Pervasive
Computing Systems . 281

Roland Reichle, Michael Wagner, Mohammad Ullah Khan,
Kurt Geihs, Jorge Lorenzo, Massimo Valla, Cristina Fra,
Nearchos Paspallis, and George A. Papadopoulos

Rapid Prototyping of Routing Protocols with Evolving Tuples 296
Drew Stovall and Christine Julien

Author Index . 303

iSOAMM: An Independent SOA Maturity Model

Christoph Rathfelder and Henning Groenda

FZI Research Center for Information Technology, Software Engineering
Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany

{rathfelder,groenda}@fzi.de

Abstract. The implementation of an enterprise-wide Service Oriented Architec-
ture (SOA) is a complex task. In most cases, evolutional approaches are used to
handle this complexity. Maturity models are a possibility to plan and control such
an evolution as they allow evaluating the current maturity and identifying cur-
rent shortcomings. In order to support an SOA implementation, maturity models
should also support in the selection of the most adequate maturity level and the
deduction of a roadmap to this level. Existing SOA maturity models provide only
weak assistance with the selection of an adequate maturity level. Most of them are
developed by vendors of SOA products and often used to promote their products.
In this paper, we introduce our independent SOA Maturity Model (iSOAMM),
which is independent of the used technologies and products. In addition to the
impacts on IT systems, it reflects the implications on organizational structures
and governance. Furthermore, the iSOAMM lists the challenges, benefits and
risks associated with each maturity level. This enables enterprises to select the
most adequate maturity level for them, which is not necessarily the highest one.

1 Introduction

The use of an SOA promises organizations to adapt their software more rapidly to
changing business needs. A successful implementation of an SOA is not limited to IT
systems and requires changes throughout the whole enterprise [1, 2]. In order to handle
this complexity, it is appropriate to implement an enterprise-wide SOA step by step us-
ing evolutional approches [3]. These approaches can also aid enterprises upgrading an
already implemented SOA.

Maturity models are a possibility to support the planning and controlling of such
evolutional approaches. They can be used to assess the maturity and assist in improving
the maturity as they provide the possibility to deduce a roadmap to a successful SOA
implementation. The selection of the most adequate maturity level is an important part
of developing a roadmap as the highest maturity level is not always the most suitable
one for each enterprise. The benefits promised by a level have to be weighed against the
costs to reach and maintain that level.

In order to ease the level selection, an SOA maturity model should exhibit levels,
which are oriented at the capability of an SOA to support business processes. Addi-
tionally, it should also point out the benefits and costs that are associated with each
maturity level. An SOA maturity model should furthermore be independent of the used
technologies and products, as existing SOA implementations are based on a variety of
technologies (e.g., CORBA, J2EE) [4, 5] and enterprises avoid to be dependent on a
certain SOA vendor or product [6,4]. Different case studies [7,6] show that the success

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 1–15, 2008.
c© IFIP International Federation for Information Processing 2008

2 C. Rathfelder and H. Groenda

of an enterprise-wide SOA implementation is often affected by organizational struc-
tures and IT governance. Therefore, an SOA maturity model should also consider the
necessary alterations within these domains.

Existing SOA maturity models were in most cases developed by SOA vendors (e.g.,
IBM, BEA, HP, or Oracle) and cannot deny a dependency on the respective products.
Additionally, the vendors take the desire to reach the highest maturity level for granted.
Therefore, they often neglect supporting an enterprise in the selection of the most ap-
propriate maturity level.

The contribution of this paper is the 1) product and technology independent SOA
Maturity Model (iSOAMM), which 2) considers technical as well as organizational
aspects. 3) It eases the selection of the most adequate maturity level by pointing out
the challenges, benefits, and risks associated with each level. This distinguishes the
iSOAMM from other SOA maturity models. The maturity levels are aligned with the
SOA’s capabilities to support business processes. This means that an SOA with higher
maturity possesses more features, which are useful within business processes.

The development of the iSOAMM is based on a sound literature review as well as
the experiences we have gained within different SOA projects. One example of a large
SOA project we are currently involved in is the “Karlsruher Integriertes Informations-
Management” (KIM) [8]. Its aim is the implementation of a university-wide SOA which
supports students as well as staff. In addition, we have taken several published SOA
case studies (e.g., Deutsche Post [6,4,5], Credit Suisse [4,5], ABB [7], and Sparkassen
Informatik [9]) into account. Furthermore, we evaluated a variety of articles, which doc-
ument best practices, success factors, and experiences related to SOA implementations,
as well as publications, which present new research results and open research questions.
In order to validate the iSOAMM we evaluated the case studies and rated the maturity
of documented SOA implementation.

This paper is structured as follows: Section 2 gives an overview of related work.
Section 3 describes the different viewpoints that are used to define the maturity lev-
els. Section 4 presents the requirements, which have to be satisfied for each maturity
level. Section 5 points out the challenges, benefits, and risks associated with each ma-
turity level. Section 6 presents the validation of the iSOAMM. Section 7 concludes the
paper and provides an outlook to future work.

2 Related Work

Regarding the maturity of enterprise architectures the US Department of Commerce
(DoC) has developed the Architecture Capability Maturity Model (ACMM) [10]. It dif-
ferentiates nine evaluation categories. This granularity enables to identify areas that are
more ahead or behind than others and eases the planning of the next steps to reach a
higher overall maturity. The different categories of the ACMM reflect that it is insuf-
ficient to analyze the architecture of a software system only, as the maturity is also
heavily influenced by the organizational structure of an enterprise. The ACMM is a
general architecture maturity model. However, the ACMM does not consider the par-
ticularities of an SOA, such as dynamic adaptation through loose coupling of services,
the consequences of higher business alignment, or reuse of services.

iSOAMM: An Independent SOA Maturity Model 3

The most well-known maturity model for SOA is the New SOA Maturity Model
(NSOAMM) [11] developed by Sonic Software, AmberPoint, BearingPoint, and Systi-
net. The NSOAMM is limited to WS-based SOA implementations. It does not consider
areas like security, monitoring, and management of services. Especially in this model, a
particularly high product dependency of the model is obvious. Furthermore, it neglects
areas like organizational structure and governance.

The Oracle Maturity Model (OMM) [12] is divided into five maturity levels. Each
level is split into eight categories, which cover the software architecture and infrastruc-
ture as well as governance, development, and enterprise structure. Additionally, a list of
Key Indicators (KI) for each maturity level sorted by the categories is available in [13].
The OMM stipulates the use of WS-technology to implement an SOA. Furthermore,
the support of user integration or automated business-to-business (B2B)-processes is
not part of this model.

The Service Integration Maturity Model (SIMM) [14] was developed by IBM in
2005. It consists of seven maturity levels, whereas only the last four maturity levels
consider services [15]. Comparable to the OMM, the SIMM is split into seven indepen-
dent categories but the KI are not publicly available. IBM has externalized the SIMM to
the Open Group at the beginning of 2007. The Open Group plans to enhance it and pub-
lish it as the Open Group Service Integration Maturity Model (OSIMM) [15]. Hence,
this will lead to a publication of the KI in the near future.

Based on the SIMM and the NSOAMM, Meier defined the Combined SOA Matu-
rity Model (CSOAMM) [16]. It is a scientific model, which is a common denominator
of these two models enabling a comparison of the evaluation results. With this target
in mind, he considers only the different maturity levels and neglects the more detailed
subdivision into categories given by the SIMM. Additionally, all the non-technical in-
dicators regarded in the SIMM are not taken into account.

3 Evaluation Viewpoints

As already mentioned, it is not sufficient to limit the evaluation of an SOA’s maturity
solely to technology-dependent criteria. The iSOAMM uses the following 5 viewpoints
which regard technological as well organizational aspects. Overall, they cover the same
domains as the SIMM, the OMM, and the ACMM.

1. Service Architecture: This viewpoint regards architectural layers of an SOA as
well as services, their roles within business processes, and the interaction between
them. The architecture can vary from providing an integration layer only to direct
support of business processes with orchestrated services, user interaction, and B2B-
cooperation.

2. Infrastructure: The loose coupling of services facilitated by an SOA supports a
rapid adaptation to new business requirements. However, this high adaptability re-
quires a stable infrastructure [6, 4]. It is therefore necessary to examine the in-
frastructure separate from the services, their composition, and their interaction.
The SOA infrastructure mainly provides a common communication layer to all
services [5, 4], which can be extended by additional components and layers (e.g.,
monitoring or security enforcement) [17, 4].

4 C. Rathfelder and H. Groenda

3. Enterprise Structure: SOA affects IT systems as well as business processes [2].
Changes which affect organizational structure and responsibilities of the different
divisions are therefore required [7,18,5]. This viewpoint regards the different divi-
sions of the company, which are affected by the SOA, as well as their responsibili-
ties and duties.

4. Service Development: The design and implementation of services is a crucial as-
pect in the implementation of an SOA. As Cox and Kreger emphasize in [19], the
development process of services needs to be adjusted and it is therefore regarded
as a separate viewpoint. In general, an increase in maturity leads to a higher rate of
automation within the development process [9, 6].

5. Governance: The successful implementation and usage of an SOA has to come
along with an adaptation of the whole enterprise [1]. This viewpoint considers
changes, rules, and guidelines that are relevant for the whole enterprise and are
not limited to Enterprise Structure and Service Development. The topic of SOA
governance is so large, that we can only present the main KI of this viewpoint for
each maturity level.

4 iSOAMM Maturity Levels

After the introduction of the evaluation viewpoints, this section describes the five differ-
ent maturity levels (Trial SOA, Integrative SOA, Administered SOA, Cooperative SOA,
and On Demand SOA) and their Key Indicators (KI). In defiance of the iSOAMM’s in-
depenence, the examples within the description of the maturity levels use web service
(WS) standards as illustration since many implemented SOAs are based upon WS [20].

Note that each maturity level constitutes an enhancement of the previous level and
hence bases on changes and features already introduced at lower levels. However, KI
of lower levels can also be overruled, for example if the structure of an enterprise
changes and organizational units are dissolved and replaced by others. Figure 1 gives
an overview of iSOAMM and its subdivision into maturity levels and evaluation view-
points. The different maturity levels are described in detail in the following subsections.

Viewpoint

Maturity Level

Service

Architecture

dynamic
services

processes

orchestrated
services

integrated
applications

islands

service
marketplace

management,
event-driven

monitoring,
security

communica-
tion

inhomo-
geneous

service as
business

service
alligned

centrally
managed

IT-oriented

separated

service on
demand

model-driven

documented,
tool support

hands-on
experiences

unstructured1

automated

fair compe-
tition control

rules

guidelines

none
Trial

SOA

2
Integrative

SOA

3
Administered

SOA

4
Cooperative

SOA

5
On Demand

SOA

Infrastructure Service

Development

Enterprise

Structure
Governance

Fig. 1. Maturity Levels

iSOAMM: An Independent SOA Maturity Model 5

4.1 Level 1: Trial SOA

This level of maturity can be attested to small, mostly independent SOA projects. Within
these projects, an enterprise gains first experiences with services. There is no common
technology or fixed set of standards that is used within all projects.

Service Architecture. The point-to-point interfaces between legacy applications,
which link a pair of applications, are substituted by services that can be used by more
than one application. Due to the lack of standardization, it is possible that different
services use incompatible technologies and standards. So this level is a collection of
miscellaneous service islands rather than a real service architecture.

Infrastructure. Due to the independency of the small SOA projects, it is likely that
different communication systems and standards are chosen. This inhomogeneous in-
frastructure often leads to incompatible service islands.

Enterprise Structure. The enterprise structure is characterized by a strict separation
into independent business departments. Each department has its own application land-
scape which is developed and maintained by a separate IT section. Cooperation across
business unit borders is very rare.

Service Development. The development of services is unstructured and done indepen-
dently for each SOA project. In most cases, the purpose is to gain experience and de-
velop best practices and guidelines for the implementation of an enterprise-wide SOA.

Governance. Early SOA projects are mainly initiated by IT departments, which are re-
sponsible for the integration of diverse applications. SOA is therefore often regarded as
a pure IT project, which only marginally affects other business units. This is usually ac-
companied by a lack of support of SOA projects by the top management of the enterprise.

4.2 Level 2: Integrative SOA

The experience gained in SOA projects at the previous level or drawn from best practice
reports is used to select an adequate infrastructural basis for the enterprise. The target
of SOAs at this maturity level is mainly the integration of systems in the IT landscape
and the realization of Enterprise Application Integration (EAI) [21].

Service Architecture. The different standards and technologies used in the previous
maturity level are substituted by a common Service Bus (SB) [4]. The implementation
of standardized service interfaces leads to a common high level Application Program-
ming Interface (API), which can be used by frontend applications to access different
backend systems [9].

Infrastructure. The common infrastructure represents the backbone of an SOA.
Hence, the requirements in terms of scalability, reliability, availability, and performance
that are imposed on the SB are very high [4]. Depending on the needs of an enterprise, a
SB is built upon quite different technologies and standards. For example, Credit Suisse
uses CORBA within their SB [4], Sparkassen Informatik uses WS technology [9], and
the SB of Deutsche Post is based on J2EE technology [5]. The SB additionally provides
logical addressing of services. This allows changing the physical location of a service.

6 C. Rathfelder and H. Groenda

Enterprise Structure. The cooperation between different business units increases in
comparison to the previous maturity level. The major alteration is the introduction of
an SOA team. It is an independent group of IT experts, which is the contact point for all
business units regarding SOA-related questions. The team members are responsible for
the design of the SB and for consulting and training personnel concerning the imple-
mentation and integration of services. For example, all enterprises regarded in [5] have
established such a central SOA team.

Service Development. Service developers are supported by a knowledge-base that
includes lessons learned, best practices and guidelines. Thanks to the regulation of the
used standards and technology, a better tool support (a service stub generator or a test
environment for example) is provided and not every development team has to find the
most appropriate toolset on its own.

Governance. A consistent change management and versioning becomes necessary
since provided services can be consumed by several applications or services. There-
fore, enterprise-wide guidelines have to be defined, that standardize the handling of
change requests and the rollout of altered services [6]. Especially in the initial stage of
an SOA of maturity level two, the integration of services into the SB is more complex
than using different proprietary interfaces, because of a lack of experience. Therefore,
an enterprise-wide compensation payment system has to be instantiated that balances
these extra costs [4].

4.3 Level 3: Administered SOA

The third maturity level is characterized by orchestrated services. The IT-system ori-
ented integration services described in the previous levels are orchestrated to imple-
ment services with a higher alignment of service’s functionality to business processes.
Figure2 sketches the Service Architecture and Infrastructure of an SOA on level 3.

Service Architecture. The existence of an orchestration layer distinguishes the Service
Architecture between maturity level two and three, and allows a higher degree of busi-
ness alignment. Orchestrations are generally implemented in a process-oriented way

Integration Services

Orchestrated Services

C
o

m
m

u
n

ic
a
ti

o
n

S
e

c
u

ri
ty

M
o

n
it

o
ri

n
g

Frontend

Orchestration
Layer

Legacy

Applications

Fig. 2. iSOAMM: Maturity Level 3

iSOAMM: An Independent SOA Maturity Model 7

and represent the business logic that was formerly hardcoded into the frontend applica-
tions [22]. Orchestrated services represent the composition of IT-oriented functionality
and realize business-oriented functionality. For example, the “Web Services Business
Process Execution Language” (WSBPEL) [23] is one of the most well-known program-
ming languages to implement WS orchestrations. Supplementary to the introduction of
orchestrated services, a standardization of business relevant data types (customer or
product for example) is necessary. This minimizes the need for data transformations
within orchestrations and thereby eases the reuse of integration services that work on
this data.

Infrastructure. The orchestration’s implementations are process descriptions and not
native executable code. These languages need a runtime environment, the orchestration
engine, which is one of the mandatory extensions of the infrastructure. The SB has to
be enriched with additional functionality [17]. The communication infrastructure has
to be flanked with a monitoring and a security infrastructure. This extension can for
example also be found in the “Web Services Architecture Stack” [24] proposed by the
W3C. The monitoring infrastructure enables the observation of performance and avail-
ability of the services. It is sufficient to monitor the messages, respectively the service
invocations and the corresponding responses. A more detailed monitoring including the
internal states of a service is not mandatory at this maturity level. Comparable to the
monitoring, the security infrastructure of this maturity level operates only on message
and service granularity. This enables the definition and enforcement of access rights
for services, whereas the actual data of a service call is not part of the security poli-
cies. Furthermore, a secure message exchange between service provider and the service
consumer is possible.

Enterprise Structure. Regarding the functionality and the data that is provided by
services they can be split up into different service domains, e.g. accounting, customer
master data, customer relationship etc. [6]. Each department is responsible for a cer-
tain domain and the included services. Besides the development of mainly orchestrated
services each department is responsible for the operation of the services. Service oper-
ation is often assigned to an own IT unit or a common IT department. The SOA team
is adapted to reflect the higher business alignment. On level two, it mainly consists of
IT experts whereas on this level it is an interdisciplinary team that includes IT experts
as well as business experts of different business units [7]. This team is also responsible
for defining common data standards and the splitting of services into service domains.

Service Development. The knowledge and tool repository, which supports service de-
velopers, is enhanced and the share of automated development steps is increased [6].
The degree of automation can be risen by using Model-Driven Software Development
(MDSD) for the development of orchestrated services. The use of MDSD is much easier
for orchestrated services than integration services, as the first ones use only standard-
ized services and feature a common implementation language.

Governance. An enterprise-wide policy has to be established that the service orien-
tation paradigm has to be applied throughout the IT landscape. However, reasonable

8 C. Rathfelder and H. Groenda

exceptions can still be allowed by the SOA team. The use of services by other parties
induces costs for the operation at the service provider instead of the consumer. Hence,
the compensation payment system has to be adapted so service providers are not pun-
ished for providing reusable services. The reuse factor of services can vary to a big
extent, as the case study of Credit Suisse in [4] shows for example that in spite of an
overall reuse factor of 1.6 some services are reused up to 12 times. Part of the gover-
nance of this level also is the establishment of enterprise-wide rules, guidelines, and
policies which regulate security concerns.

4.4 Level 4: Cooperative SOA

This maturity level is characterized by Service Level Agreements (SLA), which have
to be concluded between service consumer and provider. An SLA warrants a specified
service quality if the consumer uses the service in conformance to a specified usage pro-
file. An additional architecture layer closes the gap between services and business pro-
cesses [25]. Corresponding to [11], it has to be distinguished between B2B-processes,
which are mainly full automated, and internal processes, which involve human interac-
tion. The Service Architecture and the Infrastructure of an SOA at this level are sketched
in Figure 3.

Integration Services

Orchestrated Services

C
o

m
m

u
n

ic
a
ti

o
n

S
e

c
u

ri
ty

M
o

n
it

o
ri

n
g

/

S
L

A
-M

a
n

a
g

e
m

e
n

t

PortalChoreography

External Business Process

Orchestration
Layer

Process
Layer

SLA
SLA

SLA

SLA SLA SLA

SLA

SLASLA

SLA
SLA

Legacy

Applications

SLA

Fig. 3. iSOAMM: Maturity Level 4

Service Architecture. As mentioned above, the service architecture can have two
different characteristics (B2B-processes and human interaction), even both at the same
time. In order to support B2B-scenarios this layer supports the choreography of
processes. In contrast to an orchestration, choreography is a cooperation between
processes [26]. The integration of human users is necessary to support most internal pro-
cesses, thus they can not be implemented as orchestrations, which allow solely a com-
position of services. The common way is to use a portal that presents the tasks to the
users, which are assigned within the process. One example for such an user integra-
tion is the ”WSBPEL Extension for People“ (BPEL4People) [27]. The availability of
business rules is an additional property of the process layer. The business rules allow
a reconfiguration of processes without a redeployment [28]. Secondary, as presented

iSOAMM: An Independent SOA Maturity Model 9

in [29], events play a decisive role within real-world business processes. Therefore,
the communication between services is extended to support events in addition to direct
service invocations by other services.

Infrastructure. First of all, the communication infrastructure has to be adapted in order
to support the event-based communication whereas the possibility of active service in-
vocations is still available. One example is the “Event Bus Infrastructure” [4] developed
by Credit Suisse. The introduction of the process layer puts new requirements on the
infrastructure. It has to provide a rule system. Additionally, components are necessary,
which either allow the integration of user actions into a process - mainly by a portal -
or the choreography of processes. Similar to orchestrations, processes require a runtime
environment. These process engines are mainly orchestration engines that provide the
additionally needed functionality of choreography and user integration. Generally, busi-
ness experts rather than IT experts design processes. Therefore, descriptions of services
that are located within the repository have to include a semantic description. An exam-
ple of a UDDI-based repository that allows the integration of semantic descriptions is
presented in [30]. At this maturity level, SLAs are concluded during the development of
an orchestration or a process and changed rather seldom. An automation of this task is
therefore not yet mandatory. Nevertheless, a more detailed monitoring of the services is
essential, especially the internal states of orchestrations and processes have to be moni-
tored [31]. An example of such a monitoring infrastructure for WSBPEL orchestrations
is presented in [32]. The security infrastructure has to be extended. As shown in [33], it
is insufficient to define access policies on services or even interface level. In fact, it is
necessary to take the data into account, which is included in the service call.

Enterprise Structure. The subdivision of the enterprise into several departments,
which correspond to the service domains, is refined into smaller units. Bieberstein et
al [1] propose a service alignment down to the granularity of teams that are responsible
and specialized for only one service. Thus, the establishment of new business function-
ality is not solely a composition of services. It is rather a new interdisciplinary staffed
combination of teams within the enterprise. Nevertheless, a separate IT department,
which operates and maintains the infrastructure, is still necessary.

Service Development. The development process has to consider the potentials of busi-
ness rules and events. The development is based on the MDSD and uses graphical mod-
els to design processes and orchestrations, which are transformed into interpretable
code. The use of graphical models simplifies the development so that it is easier for
business experts. Furthermore, the integration into the security infrastructure is an im-
portant extension of the development process. The SLAs include quality parameters,
which are guaranteed by the provider. It is therefore essential to consider the quality
of service (QoS) within the development process. This means the development process
has to be extended with activities to predict or at least estimate the QoS in relation to
the QoS guaranteed by the included services [31]. The SLAs include a charge, which
has to be paid to use the service [34]. This allows the optimization of costs regarding
the quality, which is guaranteed to the consumer [31].

10 C. Rathfelder and H. Groenda

Governance. At least from this maturity level on, all new IT systems have to be im-
plemented in a service-oriented manner. Furthermore, it is mandatory that all legacy
applications are extended with service interfaces and integrated into the SOA. The com-
pensation payment system is replaced by SLAs because they define fees for the usage
of the service. The teams can balance the additional expenses that are induced by the
service development and the service operation on their own. Nevertheless, enterprise-
wide rules and a regulating instance exercising fair competition control is necessary
in order to prevent unfair enrichment through monopoly positions on crucial services.
Key process indicators and metrics have to be defined, which enable monitoring of the
enterprise-wide SOA adoption and the business processes. Especially the business pro-
cess monitoring can use the already present monitoring infrastructure.

4.5 Level 5: On Demand SOA

At the previous level, services were published including their available quality levels.
Such a request triggers the provider to check if he can offer the demanded quality level.
The provider in turn often has to conclude new SLAs with his own service providers.
In addition to the long term contracts on level four, it is possible to negotiate SLAs on
a short-term basis. This can even be as short as a single service invocation. Because of
these short-term SLAs, an automation of the SLA negotiation is necessary [35].

Service Architecture. Since services are selected automatically, a service and data
ontology is needed [31]. The static binding of the services is replaced with a dynamic
binding using the semantic description of the required functionality. This description in
combination with the ontology enables the selection of suitable services. Furthermore,
policies have to be defined that control the choice of the most adequate service. By
using semantic service matching, it is possible that there is a mismatch between the
data formats used in the process and the ones that are used by integrated services. A
data ontology enables an automated transformation of different data formats.

Infrastructure. A trading platform, which is called marketplace [36] in the following,
is required to support the automated search and provisioning of services. It can provide
a variety of different purchasing models. Two examples are public sale of services [36]
and the selection out of several offers [34]. The introduction of automated service se-
lection leads to further changes in the infrastructure because components for automatic
SLA negotiation and service selection become necessary. One framework that allows
such negotiations and additionally the monitoring of SLAs is described in [35]. In or-
der to enable an optimized service selection at runtime, a detailed monitoring of the
orchestrations and processes is needed [31].

Enterprise Structure. There are only minor changes to the enterprise structure in
comparison to level four. The provisioning of services is now the primary goal of the
enterprise and the management has to ensure the agility to adapt to changes in customer
requests.

iSOAMM: An Independent SOA Maturity Model 11

Service Development. In contrary to maturity level four, services are not choosen at
design-time. In fact, they are selected during runtime and therefore service selection
regarding the costs and the quality is more flexible. This shift of the optimization from
design-time to runtime has some serious implications. Rules and policies, which con-
trol the service selection during runtime, have to be defined within the design phase.
The service development evolves from a combination of services into a composition
of functionality. Orchestrations and processes contain the semantic specification of ser-
vices that can be used to automatically query service repositories or the marketplace for
compatible services.

Governance. The business process monitoring evolves into Business Process Man-
agement, which allows the control and optimization of business processes. Due to the
dynamic conclusion of SLAs, the monitoring of the compliance with the rules, which
have been introduced with maturity level four, has to be automated

5 Challenges, Benefits, and Risks

This section presents the benefits that are promised by tackling the challenges of each
maturity level. Additionally, the risks that are associated with the ascent from one level
to the next are listed. This eases a comparison and evaluation of the most adequate
maturity level because the benefits can be weighted up against the challenges and risks.

5.1 Level 1: Trial SOA

The challenge is comprised of the introduction of the service paradigm involving the
way of thinking and often the use of new technologies. Particularly in this first maturity
level, the development costs associated with the development of a service are slightly
higher than the costs of point-to-point interfaces.

A major benefit for the enterprise is to gain experience in adopting SOA in their
environment. Especially the lessons learned in the use of the technology and standards
are valuable when striving for the next maturity level.

The risks involved in adopting the SOA approach at this maturity level are relatively
low as only small and delimited projects are affected.

5.2 Level 2: Integrative SOA

The selection or rather implementation of the SB is difficult because many aspects like
availability, performance, and especially scalability have to be considered [4]. Sec-
ondary, the developers have to be trained in the technologies and standards provided
by the SB.

The availability of a high-level API that offers standardized access to the services is
the main gain of an SOA on this maturity level [9]. Such an API eases the service reuse
within new application and leads to an reduction of development costs [4]. Furthermore,
the knowledge-base and extensive tool support can speed up the development time.

The SB is a central component within the enterprises IT landscape. As shown in [4],
the scalability of the SB represents a large risk to the success of the SOA and with it to

12 C. Rathfelder and H. Groenda

the success of the whole enterprise. The regulation of new common standards and tech-
nologies is an additional risk as such introductions often do not find wide acceptance
amongst the developers [37].

5.3 Level 3: Administered SOA

The extensions of the infrastructure that are enjoined for this maturity level produce ob-
viously high one-time effort. The introduction of an appropriate monitoring and security
infrastructure is challenging as future requirements have to be anticipated. Secondary,
a development method for orchestrated services has to be implemented.

The service orchestrations allow a stronger alignment of IT and business. They can
be changed quickly according to new or changed business needs and the time-to-market
is reduced [4,25]. The implementation of new frontend applications is easier due to the
higher business alignment and therefore faster in general. Redundant effort is decreased
through the exchange of experiences and the increased reuse potential of services en-
abled by the standardized data types. Additionally, establishment of the orchestration
layer is comparable to the separation of business logic from the data layer and the user
interface, which is generally considered an advantage.

The step from level two to level three requires the instantiation of the interdisci-
plinary SOA team and the reorganization of business departments. The acceptance of
these changes presents a non-negligible risk for the SOA implementation. Services can
be reused within several orchestrations and applications, therefore a failure of this single
service can affect a lot of different services and applications.

5.4 Level 4: Cooperative SOA

An SLA management has to be introduced. Employees have to be trained in handling
SLAs on the technical and on the business side. Furthermore, the integration of user
interaction lead to substantial enhancements of the infrastructure. The application of
business rules in orchestrations requires an anticipation of changes in designing of busi-
ness processes. Another challenge is the reorganization of the departments into teams
as this needs a lot of support by many stakeholders throughout the whole enterprise.

The process layer promises better business support by integrating human interac-
tions. The choreography enables the realization of complex B2B-processes. The busi-
ness rules allow a faster reaction to changes in the process specification and a seamless
transition at runtime. The use of SLAs enables the inclusion of extra-functional quality
properties and hence the consideration of costs in relation to quality properties like per-
formance [31]. Additionally, the fine-grained security model allows a rollout of services
even in vital areas of the enterprise. Last but not least, the service selection is eased by
the fact that semantic searches in the service repository are possible. The decisive role
that events play in business processes can now directly be mapped to the IT processes.

The risk for IT-related changes like introducing the process layer as well as a business
rules engine is comparable low. The structural reorganization of the enterprise depends
to a big extent on the support of all employees and also requires the sensitivity if all are
willing to take the risk. In total, SOA becomes an essential factor for success or failure
in achieving the business objectives of an enterprise.

iSOAMM: An Independent SOA Maturity Model 13

5.5 Level 5: On Demand SOA

This maturity level induces large challenges. First, a change in the way of thinking is
necessary. The on demand negotiation substitutes the offering of services with preas-
signed QoS. This means the costumer can make demands, which the provider endeavors
to realize. Secondly, mainly all activities related to the operation of the SOA have to be
automated in order to enable the dynamic service selection and binding. This is not
only a technical challenge, because the staff member carrying out these tasks manually
before are affected.

This maturity level promises an even faster adaptability and higher flexibility than
the previous levels [38]. A higher customer orientation is possible due to the on demand
provisioning of services. Especially in combination with an underlying virtualized com-
puting infrastructure, the proposed resource efficiency can be optimized [38].

If the new on demand paradigm is not put into practice by the employees, the promised
benefits can not be reached. Furthermore, the full automation can be misinterpreted as a
loss of control by the managers leading to a disaffirmation of SOA.

6 Validation

In order to validate the iSOAMM, we rated several SOAs based on the information
provided in the case studies. For the sake of brevity, we only present the results and
omit evaluation details. The SOA of Sparkassen Informatik [9] is one example that is
ranked on level two. The KIM project was also ranked on level two when it started
in 2004 and reached level three last year. The SOA of Deutsche Post [6, 4] is also
ranked on iSOAMM level three. Currently, there are no level four SOAs known to
the authors. That is not unexpected as SLA management and QoS assurance are still
two large research challenges that are not fully mastered [39]. Level five is more or
less a vision only, although a lot of research is done on topics linked to this level. For
example, the European Union funds research projects which address these aspects of an
SOA within the ICT domain of the 7th Framework Programme.

7 Conclusion and Outlook

This paper introduces the iSOAMM and its five maturity levels. The maturity levels
were explored from five different viewpoints to highlight changes in IT systems, proce-
dure, and the organizational structure of an enterprise. In addition, the challenges, ben-
efits, and risks associated with each level were pointed out which enables enterprises
to select the most adequate maturity level for them. In order to validate the iSOAMM,
the implemented SOAs referenced in this article were ranked according to the maturity
levels, as far as the corresponding documentation allowed it.

The iSOAMM enables enterprises to identify rewarding areas for further SOA adop-
tion and to develop a roadmap for an SOA introduction. Due to the independency of
the iSOAMM, they are free to choose the most adequate technologies, standards, and
products. The iSOAMM consolidates current knowledge about the introduction and

14 C. Rathfelder and H. Groenda

implementation of an SOA. It also merges the experience gained in SOA projects in
industry with latest research results.

As a next step, we plan a further validation of the iSOAMM. For example, we aim
to evaluate more enterprises using our model. We also plan to compare the KI of the
iSOAMM to the ones of the OSIMM, as soon as they are publicly available. In the long
run, the refinement of KI of the levels four and, in particular, five is planned. As these
levels cover current research fields, new scientific knowledge and practical experience
may lead to adaptations in the KIs.

References

1. Bieberstein, N., Bose, S., Walker, L., Lynch, A.: Impact of service-oriented architecture on
enterprise systems, organizational structures, and individuals. IBM Systems Journal 44(4),
691–708 (2005)

2. Cherbakov, L., Galambos, G., Harishankar, R., Kalyana, S., Rackham, G.: Impact of service
orientation at the business level. IBM Systems Journal 44(4), 653–668 (2005)

3. Heffner, R., Fulton, L., Stone, J.: Key SOA Success Factors: A Starter Kit For SOA. Forrester
Research (2006)

4. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA. reprint. edn. Prentice Hall PTR, Engle-
wood Cliffs (2006)

5. Legner, C., Heutschi, R.: SOA Adoption in Practice - Findings from Early SOA Implemen-
tations. In: Proc. of European Conference on Information Systems (ECIS 2007) (2007)

6. Helbig, J.: SOA Serie: Teil 1-5. CIO (2007),
http://www.cio.de/schwerpunkt/d/Deutsche-Post-Brief.html

7. Gizanis, D., Heutschi, R., Solberg, T.: Global Order Management Services Support Busi-
nesses at ABB (2005),
http://www.alexandria.unisg.ch/Publikationen/23667

8. Freudenstein, P., Liu, L., Majer, F., Maurer, A., Momm, C., Ried, D., Juling, W.: Architek-
tur für ein universitätsweit integriertes Informations- und Dienstmanagement. In: INFOR-
MATIK 2006 - Informatik für Menschen (Band 1), pp. 50–54 (2006)

9. Zimmermann, O., Milinski, S., Craes, M., Oellermann, F.: Second generation web services-
oriented architecture in production in the finance industry. In: OOPSLA 2004 (2004)

10. Department of Commerce (Introduction - IT Architecture Capability Maturity Model),
http://ocio.os.doc.gov/groups/public/@doc/@os/@ocio/@oitpp/
documents/content/prod01 002340.pdf

11. Bachman, J., Ng, D., Kline, S., Horst, E.: A New Service-Oriented Architecture (SOA) Ma-
turity Model. whitepaper (2006), http://www.sonicsoftware.com/soamm

12. Trops, B.: SOA Maturity Modell, oder der Weg zu einer Service Orientierten Architektur.
Java Forum Stuttgart (2006),
http://www.jfs2006.de/jfs/2006/folien/B7 Trops ORACLE.pdf

13. ORACLE (SOA Maturity Cheat Sheet), http://www.oracle.com/technologies/
soa/docs/oracle-soa-maturity-modelcheat-sheet.pdf

14. Arsanjani, A., Holley, K.: Increase flexibility with the Service Integration Maturity Model
(SIMM) (2005), http://www.ibm.com/developerworks/webservices/
library/ws-soa-simm/

15. The Open Group, OSIMM Working group: Launch Presentation and WG Updates 1.0 (2007),
http://www.opengroup.org/projects/osimm/

16. Meier, F.: Service Oriented Architecture Maturity Models - A guide to SOA adoption. Mas-
ter’s thesis, University of Skövde, School of Humanities and Informatics (2006)

http://www.cio.de/schwerpunkt/d/Deutsche-Post-Brief.html
http://www.alexandria.unisg.ch/Publikationen/23667
http://ocio.os.doc.gov/groups/public/@doc/@os/@ocio/@oitpp/documents/content/prod01_002340.pdf
http://ocio.os.doc.gov/groups/public/@doc/@os/@ocio/@oitpp/documents/content/prod01_002340.pdf
http://www.sonicsoftware.com/soamm
http://www.jfs2006.de/jfs/2006/folien/B7_Trops_ORACLE.pdf
http://www.oracle.com/technologies/soa/docs/oracle-soa-maturity-modelcheat-sheet.pdf
http://www.oracle.com/technologies/soa/docs/oracle-soa-maturity-modelcheat-sheet.pdf
http://www.ibm.com/developerworks/webservices/library/ws-soa-simm/
http://www.ibm.com/developerworks/webservices/library/ws-soa-simm/
http://www.opengroup.org/projects/osimm/

iSOAMM: An Independent SOA Maturity Model 15

17. Papazoglou, M.P.: Extending the Service-Oriented Architecture. Business integration jour-
nal, 18–21 (2005)

18. Baer, T.: SOA: BUILDING THE ROADMAP. zapthink white paper (2007)
19. Cox, D.E., Kreger, H.: Management of the service-oriented-architecture life cycle. IBM Sys-

tems Journal 44(4), 709–726 (2005)
20. Austvold, E., Carter, K.: Service-Oriented Architectures: Survey Findings on Deployment

and Plans for the Future. AMR Research, Inc., Research Report (2005)
21. Linthicum, D.S.: Next generation application integration, 3rd printing edn. Addison-Wesley,

Reading
22. Wong-Bushby, I., Egan, R., Isaacson, C.: A Case Study in SOA and Re-architecture at Com-

pany ABC. In: Proc. of the HICSS 2006 (2006)
23. OASIS: Web Services Business Process Execution Language (WSBPEL) (2007)
24. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.: Web

Services Architecture. W3C Working Group Note (2004)
25. Zimmermann, O., Doubrovski, V., Grundler, J., Hogg, K.: Service-oriented architecture and

business process choreography in an order management scenario: rationale, concepts, lessons
learned. In: Proc. of OOPSLA 2005 (2005)

26. Peltz, C.: Web Service Orchestration and Choreography: A look at WSCI and BPEL4WS.
WebServices Journal (2003)

27. Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König, D.,
Leymann, F., Müller, R., Pfau, G., Plösser, K., Rangaswamy, R., Rickayzen, A., Row-
ley, M., Schmidt, P., Trickovic, I., Yiu, A., Zeller, M.: WS-BPEL Extension for People
(BPEL4People) (2007), https://www.sdn.sap.com/irj/sdn/bpel4people

28. Charfi, A., Mezini, M.: Hybrid web service composition: business processes meet business
rules. In: Proceedings of ICSOC 2004 (2004)

29. Schulte, R.W.: The Growing Role of Events in Enterprise Applications. Gartner Research
(2003), http://www.gartner.com/DisplayDocument?doc cd=116129

30. Paoli, H., Schmidt, A., Lockemann, P.C.: User-Driven Semantic Wiki-based Business Ser-
vice Description. In: Proceedings of I-Semantics 2007 (2007)

31. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware mid-
dleware for Web services composition. IEEE Trans. on Softw. Eng. 30(5) (2004)

32. Momm, C., Mayerl, C., Rathfelder, C., Abeck, S.: A Manageability Infrastructure for the
Monitoring of Web Service. In: 14th Annual Workshop of HP SUA (2007)

33. Emig, C., Brandt, F., Kreuzer, S., Abeck, S.: Identity as a Service - Towards a Service-
Oriented Identity Management Architecture. In: Pras, A., van Sinderen, M. (eds.) EUNICE
2007. LNCS, vol. 4606, pp. 1–8. Springer, Heidelberg (2007)

34. Tosic, V., Patel, K., Pagurek, B.: WSOL - Web Service Offerings Language. In: Bressan,
S., Chaudhri, A.B., Li Lee, M., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002.
LNCS, vol. 2590, pp. 57–67. Springer, Heidelberg (2003)

35. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H., Polan, M.,
Spreitzer, M., Youssef, A.: Web services on demand: WSLA-driven automated management.
IBM Systems Journal 43(1), 136–158 (2004)

36. Lamparter, S., Schnizler, B.: Trading services in ontology-driven markets. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, Springer, Heidelberg (2007)

37. Haft, M., Humm, B., Siedersleben, J.: The Architect’s Dilemma - Will Reference Architec-
tures Help?. In: Quality of Software Architectures and Software Quality, pp. 106–122 (2005)

38. Crawford, C.H., Bate, G.P., Cherbakov, L., Holley, K., Tsocanos, C.: Toward an on demand
service-oriented architecture. IBM Systems Journal 44(1), 81–107 (2005)

39. Papazoglou, M.P., Heuvel, W.J.: Service oriented architectures: approaches, technologies and
research issues. The VLDB Journal 16(3), 389–415 (2007)

https://www.sdn.sap.com/irj/sdn/bpel4people
http://www.gartner.com/DisplayDocument?doc_cd=116129

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 16–29, 2008.
© IFIP International Federation for Information Processing 2008

Describing Component Collaboration
Using Goal Sequences

Cyril Carrez1, Jacqueline Floch2, and Richard Sanders2

1 NTNU,
Department of Telematics,
7431 Trondheim, Norway
carrez@item.ntnu.no

2 SINTEF ICT,
7465 Trondheim, Norway

{jacqueline.floch,richard.sanders}@sintef.no

Abstract. Services are normally not performed by a single component, but result
from the collaboration of several distributed components. Their precise
specification and validation require complex models, where the intention of the
service is easily lost in the detail. This paper exploits the concept of service goals
that was earlier introduced to simplify service modeling. It describes the
semantics of service goals, how to specify and how to use them. We show that so-
called goal sequences can provide a designer-friendly, high-level description of
the intention of the service, while maintaining simplicity, reusability and
flexibility when composing from elementary services. By way of examples, we
illustrate the difference between goal sequences and behavior descriptions. Finally
we discuss issues related to the validation of goal sequences and their use at
design time and runtime, for example in connection with service discovery.

Keywords: Goal sequences, collaborative components, high-level service
specification.

1 Introduction

Ensuring interoperability in distributed systems has been a software engineering topic
for decades. Recently the ICT community has rallied around the principles of a
service oriented architecture (SOA) in order to address this challenge, see e.g. [1].
Within contemporary SOA, the composition approach called choreography is
concerned with collaborative business processes involving multiple autonomous
services, where different participants can assume different roles with different
relationships. However, so far only informal specifications of service choreography
have been suggested [2]. At the same time, semantic web services seek to characterize
what a service can provide by offering means of expressing interfaces using Web
Services Description Language (WSDL) [3]. Although WSDL aims at providing a
formal definition of the interface to a service, it is restricted to a static description of
operations and associated messages.

 Describing Component Collaboration Using Goal Sequences 17

We have previously suggested the concept of a service goal to characterize the
possible achievements of a service, and have shown how service goals can simplify
service modeling in UML2 [4]. This article refines the semantics of service goals,
which is one result of the EU IST project SIMS1. We have also suggested goal
sequences as a means of expressing the intensions of a composite service [5], i.e. the
intention of a choreography. In this article we argue for the merits of goal sequences
by means of simple examples, and contribute with advances on how to model them.
However, while goal sequences provide a designer-friendly overview, they do not
specify everything. In this article we discuss in particular the difference between goal
sequences and behavior.

SOA is increasingly gaining acceptance, influencing the way people understand
and define services. However, there is a fundamental limitation of SOA as it is
currently understood. In SOA, services are provided by a service provider to a service
consumer. A service provider is normally a “passive object” in the sense that it never
takes any initiatives towards a service user. Collaborative services on the other hand
entail collaborations between several autonomous entities that may behave in a
proactive manner and may take initiatives towards each other. This is typical for
telecom services, but also for a large class of services such as attentive services,
context aware services, notification services and ambient intelligence. In this paper
we consider collaborative services, where multiple components interact to perform a
composite service. This generalization allows for a wider class of services.

The structure of this position paper is as follows: in section 2 we present service
goals and their semantics, showing how composite services are modeled from
elementary services using UML2 collaborations, and how goals characterize so-called
semantic interfaces. Section 3 presents goal sequences as an intuitive way of
modeling the intention of composite services, similar to choreographies. In section 4
we discuss issues related to validation and composition at design time and at runtime.
We also discuss related work, and finally conclude by drawing some perspectives.

2 Semantics of Service Goals

As proposed by Sanders et al. [4], services are modeled by UML2 collaborations [6].
We distinguish between composite and elementary collaborations, as shown in Fig. 1.
Elementary collaborations specify partial service behaviors. They define a collaboration
between exactly two parts, called semantic interfaces, as well as the service goals of the
collaboration. Semantic interfaces specify interface behavior, while service goals (or
goals for short) specify the desired outcome of that behavior; both are discussed in this
section. Composite collaborations, on the other hand, specify the service roles
implemented by components2 that take part in the service. Composite collaborations are
in fact composed of UML2 collaboration uses, where each collaboration use is typed by
an elementary collaboration. A service role can be bound to a number of semantic

1 Semantic Interfaces for Mobile Services; see http://www.ist-sims.org
2 We distinguish between the specification of a service, and its implementation. With that

distinction in mind, we speak of service roles when specifying the service (at design time),
while we speak of components when we execute the service implementation (at runtime).
Service roles are depicted by an octagon in the composite collaboration.

18 C. Carrez, J. Floch, and R. Sanders

interfaces, which thus type its ports. For example, Fig. 1a specifies a service where a
Traveler interacts with a Hotel and a Plane in order to plan a travel. The interactions are
typed by the elementary collaborations ReserveHotel and ReservePlane.

Traveler

Plane

Hotel

iResHotel
iHotel

iPlane

iResPlane

TravelReservation
ReserveHotel

iResHotel iHotel

Goals: RoomReserved, OptionOnRoom

ReservePlane

iResPlane iPlane

Goals: SeatReserved

a) Composite Collaboration b) Elementary Collaborations

rp:ReservePlane

rh:ReserveHotel

Two semantic interfaces

Service role
(they are realized by the component)

Fig. 1. Travel service modeled using collaborations and collaboration uses

2.1 Service Goals and Elementary Collaborations

The elementary collaborations of Fig. 1b identify the goals reachable by each of them.
Service goals do not define the behavior of an application, but rather the desired
outcome of a behavior: they describe its intention. For example, concerning
ReserveHotel, two goals can be achieved: RoomReserved or OptionOnRoom. Both are
desirable outcomes of this micro-service. However, this does not mean that those
goals must or will be achieved during an interaction between the Traveler and Hotel:
possibly the hotel has no rooms left, meaning neither goal can be achieved.

Service goals were first proposed by Sanders [5, 7]. While Sanders described
service goals using OCL expressions, we describe the goals using ontologies [8].
Ontologies allow us to describe the semantics of the goals (for instance “establish a
multimedia call”), allowing flexible reasoning on goals and user-friendly descriptions.

We also differ from Sanders in the number of goals an elementary collaboration
can achieve. Specifically we do not consider partial or sub-goals to describe a partial
achievement in the collaboration. Several goals can be specified, but only one can be
achieved during the execution of the elementary collaboration at runtime. This
restriction was motivated by the desire to have a simple and intuitive specification
when service goals are used during composition of a service (see section 3).

2.2 Service Goals and Semantic Interfaces

While a goal characterizes the desired outcome of a behavior, the behavior itself is
described by a semantic interface [9]. A semantic interface describes the visible
behavior of a service role at a connection endpoint. Goals are attached to that
behavior, allowing one to specify how a semantic interface can achieve a goal in a
collaboration. Semantic interfaces type the ports of the service role, and are used to
validate the composite service: when two service roles interact through ports,

 Describing Component Collaboration Using Goal Sequences 19

compatibility checks can be applied on complementary semantic interfaces to ensure a
consistent interaction [10, 11].

Semantic interfaces are specified using UML state machines, with message passing
semantics. Triggers and effects specify respectively a reception or a sending of a
signal, thus specifying how to interact with the semantic interface3. We use a
stereotype <<goal>> state to specify that the interaction has achieved a particular goal
at this point. This way, goals represent “progress” in the behavior, and thus are a
characterization of liveness. For example, Fig. 2 shows the state machine of the
semantic interface iHotel of the elementary collaboration ReserveHotel presented in
Fig. 1. One can ask for available rooms at specific dates, and either reserve the room
and thus achieve the goal RoomReserved4, or take an option on that room and achieve
the goal OptionOnRoom. A <<goal>> state has exactly one outgoing transition,
stereotyped <<transitionGoal>>: this transition is instantaneous. Goal states are
represented by a dashed state symbol in Fig. 2.

IdleIdle CheckRoomsCheckRooms WaitConfirmWaitConfirm

ReserveRoomReserveRoom

MakeOpt
Reservation

MakeOpt
Reservation

RoomReservedRoomReserved

OptionOnRoomOptionOnRoom

Dates

/AvailableRooms

Reference&Dates

Dates

Reserve

TakeOption

Abort

/Reference

/Reference

iHotel

IdleIdle WaitRoomsWaitRooms ConfirmConfirm

WaitRef.WaitRef. RoomReservedRoomReserved
/Dates

AvailableRooms /Reserve

/Abort

Reference

iUser_ResHotel

Compatible
Goals are achieved

accordingly

VerifyOption /OK

/AvailableRooms

State stereotyped
<<goal>>

Fig. 2. Two compatible semantic interfaces, illustrating goal compatibility

We draw attention to two important issues regarding the goals and how they relate

to the behavior of a semantic interface. First of all, different behaviors can lead to the
same goal: for instance to achieve the goal RoomReserved, it is possible to ask for
available dates and reserve the room as the iUser_ResHotel does, or give the
reference of an option on a room that was made earlier, and reserve the room if the
option is still valid, shown in the upper part of the state machine of iHotel. Secondly,

3 Parameters of signals are not taken into account.
4 Payment of the room is performed by another elementary collaboration, as shown in section 3.

For sake of simplicity, it is not included here.

20 C. Carrez, J. Floch, and R. Sanders

some behavior can still occur at the semantic interface after a goal has been reached,
e.g. clean-up messages (for instance closing a session). Hence achieving a goal does
not mean terminating a behavior.

The power of semantic interfaces lies in their use during composition. When two
service roles interact, the connected semantic interfaces must be compatible, as we
defined it in [11]: their interaction does not lead to unspecified message reception,
deadlock, or improper termination, and their interaction is live. Concerning deadlock,
we restrict ourselves to avoiding deadlocks between two semantic interfaces by
ensuring that one of them will always be able to take action. By improper termination,
we mean that both semantic interfaces should terminate accordingly. Finally, by live
interaction, we mean they are capable of reaching a common goal. The compatibility
relation is illustrated in Fig. 2, with the semantic interface iUser_ResHotel shown at
the bottom. This semantic interface cannot make any option on a room, but is still
goal compatible with iHotel as they can achieve the goal RoomReserved.

As a final point, all the entities we presented so far are elements of reuse:
elementary collaborations, semantic interfaces and service roles can be reused in other
composite collaborations, hence taking part in services they were not designed for in
the first place. This reusability is illustrated through the examples of the article.

3 Goal Sequences

So far we have shown how service goals describe the intention of partial service
behaviors, and how they are related to elementary collaborations and semantic
interfaces. When it comes to the service, service goals are composed in order to specify
the intention of the whole service. This composition is specified by what we call goal
sequences. Goal sequences were first introduced by Sanders [5]; in this article we
propose a precise semantics allowing one to exploit them for validation purposes.

A goal sequence is a high-level specification which describes a desirable behavior,
namely how goals depend on each other in terms of pre-conditions. As shown in
section 4, they are used to verify that a composition of service roles is live (i.e.
something useful may be achieved), or during service discovery. We distinguish
between Collaboration goal sequences and Role goal sequences. The difference is
that the former applies to composite collaborations and refers to goals of the
elementary collaborations, while the latter applies to the service roles, and refers to
the goals of its semantic interfaces. The principles presented in this section apply to
both kinds of goal sequences; we will only discuss in length about collaboration goal
sequences (here denoted goal sequences for short).

A goal sequence describes dependencies between the goals of the elementary
collaborations that are used in a particular composite collaboration. They describe the
intention of the composite service: that something useful can be achieved, and how it
should be achieved (i.e. how the different elementary collaboration goals should be
sequenced). We suggest that goal sequences are specified using UML Activity
diagrams, where an activity represents a collaboration use5 of the composite

5 Recall that a collaboration use is typed by an elementary collaboration. Hence the goals of the

collaboration use are the goals of the corresponding elementary collaboration. This way, an
elementary collaboration can be used in many places in a composite collaboration.

 Describing Component Collaboration Using Goal Sequences 21

collaboration6, and outgoing arrows represent the goals achieved by that collaboration
use. Activity diagrams are very helpful for goal sequences, as several collaborations
may execute in parallel. Moreover, activity diagrams are in line with the semantics of
goal sequences: each activity represents a goal to be achieved. Sanders proposed
interaction overview diagrams for goal sequences [4, 7]; however such diagrams
currently lack tool support. We investigated using state diagrams in [11], which have
more tool support, but they tend to get cluttered up when expressing parallel behavior
in orthogonal states.

Fig. 3 shows the goal sequence for the TravelReservation presented in Fig. 1a. The
two collaboration uses are represented by the two activities rh and rp. The goal
sequence specifies the intention of the service, which is to reserve a room and a seat
in a plane (goals RoomReserved and SeatReserved). We have deliberately chosen to
drop the goal OptionOnRoom, as TravelReservation does not propose such an
intention (in fact, TravelReservation is reusing ReserveHotel which may have been
specified in another service). We define that it does not matter in which order the
goals are achieved, as long as both of them can be achieved before the termination of
the composite service. Note that this describes the intention of the service, and does
not mean that each execution will actually achieve those goals: possibly the plane or
the hotel is full. This example shows the primary advantage of goal sequences: it is
easy to show the intention of the service. We believe that goal sequences are quite
intuitive, and maintain simplicity during composition.

rh

Room
Reserved

Seat
Reserved

rp

Fig. 3. Goal sequence for the composite collaboration TravelReservation

Fig. 3 shows one typical pattern for goal sequences, namely two goals that can be

achieved in parallel. Fig. 4 shows patterns needed to specify different kinds of pre-
conditions. The first one, on the upper left corner, shows the principle of goal
sequences. In this pattern, two goals g1 and g2 are sequenced; the semantics is that
the achievement of g1 is a pre-condition for the achievement of g2. We say that g1
enables g2. As we shall see in section 4, this does not mean that g1 enables the
collaboration C2, as the behavior of C2 may start before or without g1 being
achieved. Boolean expressions AND and OR can also be specified in pre-conditions,
as shown at the bottom of the figure.

6 For role goal sequences, activities represent semantic interfaces.

22 C. Carrez, J. Floch, and R. Sanders

C1

g2

g1

g3

g2 g3

C1

C2 C3

g2 g3

g1

C2C1

g2g1

C1

C2 C3

g1

C3C2

C2

C1

g2

g1

Two goals in sequence:
C1.g1 is a pre-condition to C2.g2 Two goals in parallel

Goal that is a precondition to
two independent goals

Pre-condition with AND:
(C2.g2 AND C3.g3) is a precondition to C1.g1

Pre-condition with OR:
(C2.g2 OR C3.g3) is a precondition to C1.g1

Fig. 4. Patterns for collaboration goal sequences

Goal sequences are very useful and intuitive when it comes to the design of

collaborative services, i.e. when several participants can take initiative. For instance,
Fig. 5 specifies a payment functionality when reserving a room to the hotel. As shown
on the left of the figure, three service roles take part in the service: in addition to the
User and the Hotel, there is also a Bank. Several collaboration uses demonstrate the
composition of micro-services, most of them can be reused in different services: Pay
and ConfirmPayment can be used in any service where money is involved. The goal
sequence is shown in Fig. 5b: the room has first to be reserved, and then the user pays
the bank, which in turn pays the hotel. Confirmation of payment and booking ends the
service. Note, again, that the order of those two goals is of no importance.

Fig. 5 also shows the difference between the (collaboration) goal sequence and the
role goal sequence: Fig. 5c is the role goal sequence for the Bank, which specifies
how the service role should sequence the goals. We see the role goal sequence is in
fact a subset of the collaboration goal sequence in Fig. 5b. Role goal sequences
should not need to be specified by hand, but rather be derived automatically from the
collaboration goal sequence.

A role goal sequence sets constraints on the behavior of a service role: the service
role should sequence the goals of its semantic interfaces in the proper order. For
instance, the Bank should be paid before it pays the booking of the room, which in
turn should happen before it confirms payment to the User. Such constraints are one
of the uses of goal sequences we discuss in the next section. However, role goal
sequences do not specify precisely how to compose semantic interfaces: even though
some goals should be sequenced, the service role could nonetheless interact in parallel
on the associated semantic interfaces (see section 4.2).

 Describing Component Collaboration Using Goal Sequences 23

User Hotel

ReserveAndPayHotel

cb:ConfirmBooking

rh:ReserveHotel

Bank

pb:PayBooking
p:Pay

cp:ConfirmPayment

a) Composite Collaboration

RoomReserved

Paid

Booking
Confirmed

Payment
Confirmed

BookingPaid

b) Collaboration
Goal Sequence

rh

p

pb

cb cp

Paid

Payment
Confirmed

BookingPaid

c) Role Goal Sequence
(Bank)

p.seller

pb.payer

cp.seller

Paid

Payment
Confirmed

BookingPaid

c) Role Goal Sequence
(Bank)

p.seller

pb.payer

cp.seller

Fig. 5. Goal sequence and role goal sequence in a three-party service

4 Discussion

This section discusses several remaining open issues. We show how resolving them
will enable validation of interoperability between components in a flexible manner.
We first discuss the validation of goal sequences at design time, and how they can be
used at runtime. We show that although they can be useful for service discovery, goal
sequences are not sufficient to ensure safe composition.

4.1 Validation of Goal Sequences at Design Time and Runtime

Goal sequences can be used to verify if a composition is live, meaning that the
interconnected service roles are able to achieve something useful together. To ensure
that the intention of the service is achievable, validation using tools can be performed;
preferably this is done at design time, but if necessary it can be done at run time. The
validation will ensure the correctness of a composition of service roles.

At design time, service roles can be validated against their semantic interfaces and
the goal sequences. Projection and refinement mechanisms can be used in order to
verify that the service role is compatible with the semantic interfaces [10, 11]. It
should also be possible to check if the service role satisfies the pre-conditions on
goals imposed by the role goal sequence, i.e. it sequences the goals of its semantic
interfaces in the proper order.

Once service roles have been validated against service specifications (i.e. the
collaborations, semantic interfaces and goal sequence), components that implement
these roles can be developed7 and deployed along with descriptors that describe their
behavioral properties: semantic interfaces and role goal sequences.

At runtime, the descriptors can be used to validate a dynamic composition.
Semantic interfaces can be used to check that two interconnected components are goal

7 Components also implement some functionality related to their execution environment (e.g.

underlying middleware for component registration, etc).

24 C. Carrez, J. Floch, and R. Sanders

compatible, implying that they can achieve a goal together, for instance that a User
and a Hotel can achieve the OptionOnRoom goal. The same principle applies to goal
sequences: if components cannot sequence their goals correctly, then there is no use
in starting a service session. E.g. if a particular Hotel requires payment before
confirming a booking, then it is of no interest to a User that behaves according to the
ReserveAndPayHotel service. However, several questions arise concerning such
validation: given the role goal sequences of each component, is it possible to validate
component collaborations on the fly in an efficient manner, i.e. so the validation can
be performed by the device? Is it possible to automatically derive a collaboration goal
sequence? If so, what will be the semantics of that goal sequence, i.e. the intention of
the resulting service? Should it be presented to the user? If so, how?

4.2 Goal Sequences and Safe Composition

While the previous section focused on the use of goal sequences to ensure a
composition of service roles does something useful, we also need to take into account
safety properties during composition. A component interacts through its semantic
interfaces; some of them will be active when the component starts, while others will
become active as a result of its own or external initiatives. A safe composition should
make sure that if a component receives a signal on one of its semantic interfaces, it is
actually ready to receive such a signal.

Unfortunately, goal sequences fall short in that area; it turns out that they only provide
support for loose composition. As illustrated in Fig. 6, goal sequences do not specify how
elementary collaborations are composed (i.e. in sequence or in parallel for instance). In
this example, the Boss first asks his/her Secretary to plan a travel for him/her. The
Secretary will reserve the Hotel and the Plane, and give the Boss a confirmation. The goal
sequence shows that the elementary collaboration PlanTravel should not achieve its goal
before the end, while in fact PlanTravel initiates the whole service.

In addition goal sequences are not well suited for detecting deadlocks. In the
ReserveAndPayHotel (Fig. 5a), one should make sure that the three components will not
be in deadlock, i.e. each one waiting for the other in a circular manner. However, as
goal sequences do not describe temporal dependencies between behaviors, it is not
possible to detect deadlocks using goal sequences alone. One should not aim at simply
detecting the deadlock when it happens, but rather at detecting possible deadlocks
before starting the service, i.e. detecting deadlock-free configurations of components.

Secretary

Plane

Hotel

iResHotel
iHotel

iPlane

iResPlane

Secretary_TravelReservation

rp:ReservePlane

rh:ReserveHotel

Boss

iPlanTravel

pt:PlanTravel

iTravel Room
Reserved

Seat
Reserved

Travel
Reserved

a) Composite Collaboration b) Goal Sequence

pt

rh rp

Fig. 6. Goal sequences and order of execution of elementary collaborations

 Describing Component Collaboration Using Goal Sequences 25

4.3 Goal Sequences in Service Discovery at Runtime

Goals and Goal sequences can be exploited in service discovery at runtime. For
instance a Caller may need to discover a Callee that is capable of using Video, and
does not want to interact with a component that can only communicate via SMS.

At runtime, when a user starts a service, he/she will start some component on
his/her device. This component will be involved in some service, which means it
wants to discover compatible components in order to interact with them to provide
some useful functionality to the user. This entails discovering components that have
compatible semantic interfaces, and a compatible role goal sequence.

The discovery of compatible components can result in numerous configurations, as
shown in Fig. 7. In this example, the Traveler wants to discover components that are
compatible with its semantic interfaces and role goal sequence. Several configurations
of components might be discovered, as shown on the left. Possibly some service
providers have heard of this service, and developed a TravelAgency that performs the
reservations, or the Hotel and the Plane may interact with each other to order a taxi;
in all the cases, the goal sequences need to be compared and the resulting composition
needs to be validated.

Without such validation, seemingly compatible but useless components might be
discovered. Using goal sequences, we restrict the discovery to components that can
potentially achieve the behavior intended by the user when he/she started the service.
Moreover, we can take advantage of ontologies to first filter components that achieve
the most appropriate goals.

Plane

Hotel
iHotel

iPlane
rp:ReservePlane

rh:ReserveHotel

iResHotel

iResPlane

Traveller

SISISI RGSSISISI RGS
Service

discovery

Configuration1

HoteliHotel

SISISI RGSSISISI RGS

PlaneiPlane

SISISI RGSSISISI RGS

Configuration1

HoteliHotel

SISISI RGSSISISI RGS

HoteliHotel

SISISI RGSSISISI RGS

PlaneiPlane

SISISI RGSSISISI RGS

PlaneiPlane

SISISI RGSSISISI RGS

Configuration2

iHotel

iPlane

Travel
Agency

SISISI RGSSISISI RGS

Configuration2

iHotel

iPlane

Travel
Agency

SISISI RGSSISISI RGS

Configuration3

iResTaxiHotel

iResTaxiPlane

rt:ReserveTaxi

Hotel2iHotel

SISISI RGSSISISI RGS

Plane2iPlane

SISISI RGSSISISI RGS

Configuration3

iResTaxiHotel

iResTaxiPlane

rt:ReserveTaxi

Hotel2iHotel

SISISI RGSSISISI RGS

Hotel2iHotel

SISISI RGSSISISI RGS

Plane2iPlane

SISISI RGSSISISI RGS

Plane2iPlane

SISISI RGSSISISI RGSSI: Semantic Interface
RGS: Role Goal Sequence

Fig. 7. Discovery of compatible components

5 Related Work

The understanding that services entail collaboration among several distributed
autonomous components is not new. This was recognized since the early days of
telecommunications, but is also typical for many new services such as attentive
services, context aware services, notification services and ambient intelligence. In
terms of modeling of collaborations, various dialects of interaction diagrams existed

26 C. Carrez, J. Floch, and R. Sanders

prior to the first standardization of the ITU-T MSC language in 1994 [12]. However,
interactions alone do not really cover structural aspects nor provide flexible binding
of interfaces to roles in the way now made possible using UML2 collaborations.
While interaction diagrams provide a cross-cutting view of a service, they are often
too detailed to be easily understood. Our approach abstracts the cross-cutting view on
the service using collaborations and goal sequences, and describes the detailed
behavior of interfaces using state machines.

In model driven development one strongly argues for developing abstract models
that can be refined and transformed into implementation specific models [13]. Model
driven approaches to service engineering are still in their infancy. Most of the UML-
based approaches developed for service modeling focus on consumer-provider
services. For example, Kramler et al. [14] propose to use UML2 collaborations for
modeling web service collaboration protocols, and activity and interaction diagrams
for more detailed specification. In the same way, Kraemer and Herrmann [15] specify
reactive systems with UML2 collaborations for structural properties, and UML2
activities for behavioral aspects. However, the authors are more focused on design
time, while we take advantage of service goals to discover useful compositions at
runtime. Similarly Ermagan and Krüger [16] consider services to be collaborations
between roles. They introduce a UML2 profile for the specification of service-
oriented architectures. However they do not seem to exploit the capability of
composition of collaborations (i.e. using UML2 collaboration uses). The definition of
a UML Profile for services is an ongoing activity at the OMG. The responses
submitted to the OMG RFP (request for proposal) “UML Profile and Metamodel for
Services (UPMS) RFP” [17] indicate that UML2 collaborations will gain importance
in the future modeling of services. At the time of writing the submitted responses to
UMPS are under discussion, and we are contributing to this work. A mechanism for
expressing goals is one such contribution.

Goals have been extensively used in the engineering domain to capture, analyze,
validate and document the properties a system should have [18, 19]. Similarly goals
are proposed in service modeling to represent the properties desired by the user
[20, 21]. While the term goal is a concept related to the user, capability is used in
relation with the service and represents what the service does. In their conceptual
service framework Quartel et al. [20] suggest that the definition of the user goal
should provide a high-level description of the service, this to facilitate the discovery
of services. They propose an abstraction level at which a service is modeled as a
single interaction, that somehow matches an elementary collaboration in our work.

To the best of our knowledge, no one has used goal sequences before to represent
the overall functionality of services and the dependencies between elementary
collaborative behaviors. Goals associated to components and represented in the state
machines are similar to progress labels introduced by Holzmann [22] and can be
exploited to validate the liveness properties of interacting state machines. Related to
our work and also building upon on [4], Castejón and Bræk extend the concept of
goal sequences allowing a precise specification of services solely using collaborations
and goal sequences (but not state machines) [23]. Their aim is to develop abstract
service models that can be used for early detection of errors, such as implied
scenarios. Their approach focuses on service composition at design time. Differently

 Describing Component Collaboration Using Goal Sequences 27

we consider discovery and composition at runtime and therefore need more simple
service representations.

In the web service domain, intensive research work aims at the automation of
service discovery and composition. Current web technologies operate at a syntactic
level and therefore require human interaction. The Web Service Modeling Ontology
(WSMO) is a result of that research effort [21, 24]. WSMO provides a formal
language for semantically describing all relevant aspects of Web services. It defines
the concepts of capability and goal that respectively relate to the Web service and the
user. Capabilities include the semantic description of a variety of properties such as
non-functional properties (e.g. financial or security aspects), pre- and post-conditions
and interface behaviors. As a complementary concept, a goal includes the requested
capability that the user expects from a service. Although detailed service descriptions
are needed for precise discovery, unlike our goals WSMO does not provide any
abstract description of services that would facilitate a quick initial discovery of
potential, relevant services. The detailed interface behaviors, called choreographies in
WSMO, are described using UML state machines in our work.

We have intentionally avoided replication between UML models and ontology
artifacts. We do not define the semantics of each message using ontologies, but this
could be done in the same way as for goals. Beyond discovery, WSMO also aims at
facilitating service composition. It is not clear how this objective can be achieved as
no support for describing temporal dependencies between composed services is
provided. WSMO defines the concept of orchestration to describe how a service
makes use of other services. This concept restricts to the hierarchical composition of
services. WSMO does not provide support for more complex compositions such as
collaborative composition. Collaborative composition is called choreography in Erl
[1] and in the WS-CDL standard [2]. This use of the term choreography differs from
WSMO where choreography is restricted to the definition of interface behaviors.

6 Conclusion and Perspectives

Systems modeling in high-level graphical design languages such as UML and access
to advanced tools for validation, simulation and code generation has been available
within certain engineering areas for quite some time, the telecoms domain being one
that matured early in this respect, defining formal languages [12, 25]. It is therefore
somewhat surprising that service engineering is still largely implementation-oriented
without any clear separation between service logic and implementation detail. This is
a paradox since service-orientation essentially means to focus on service specification
and to hide the details of component design and implementation, allowing different
realizations of the same service.

In this paper we argue for the benefits of characterizing partial service behaviors
with goals, and of modeling them with elementary collaborations in UML2. A
mechanism for expressing goals is currently being input to the upcoming UML profile
and metamodel for services (UPMS).

Focusing on goals enables service engineers to design and analyze service
composition at a high level; we argue for the merits of goal sequences as an intuitive
description of the intention of service choreographies. We have discussed how goal

28 C. Carrez, J. Floch, and R. Sanders

sequences can benefit service discovery, while they fall short of being sufficient for
comprehensive validation and automated composition. Solutions for dynamic
composition and runtime validation require further work. However, there is much to
be gained both at design time and for service discovery at runtime by abstracting
away unnecessary implementation details.

Acknowledgements. Our work is supported by the EU IST 6th framework program.

References

1. Erl, T.: Service-Oriented Architecture - Concepts, Technology, and Design, 6th edn.
Prentice Hall, Englewood Cliffs (2006)

2. W3C. Web Services Choreography Description Language (WSCDL) Version 1.0 - W3C
Candidate Recommendation - 9 November 2005 (2005)

3. W3C. Web Services Description Language (WSDL) Version 2.0 - W3C Recommendation
- 26 June 2007 (2007)

4. Sanders, R., Castejón, H., Kraemer, F., Bræk, R.: Using UML 2.0 Collaborations for
Compositional Service Specification. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, Springer, Heidelberg (2005)

5. Sanders, R., Bræk, R.: Modeling Peer-to-peer Service Goals in UML. In: Proc. of the 2nd
Intl. Conf. on Software Engineering and Formal Methods (SEFM 2004), IEEE Computer
Society Press, Los Alamitos (2004)

6. Object Management Group: Unified Modeling Language: Superstructure version 2.1.1,
formal/2007-02-05 (2007), http://www.omg.org/cgi-bin/doc?formal/07-
02-05

7. Sanders, R.: Collaborations, Semantic Interfaces and Service Goals: a way forward for
Service Engineering. Doctoral theses at NTNU 2007:68. NTNU (2007)

8. SIMS: Deliverable D3.4 Techniques for Ontology-Driven Semantic Interface Artefacts,
final version (2007), http://www.ist-sims.org/

9. Sanders, R., Bræk, R., Bochmann, G., Amyot., D.: Service Discovery and Component
Reuse with Semantic Interfaces. In: Prinz, A., Reed, R., Reed, J. (eds.) SDL 2005. LNCS,
vol. 3530, pp. 85–102. Springer, Heidelberg (2005)

10. Floch, J.: Towards Plug-and-Play Services: Design and Validation using Roles. PhD
Thesis 2003:47. NTNU (2003)

11. SIMS: Deliverable D2.1 Languages and Method Guidelines, first version (2007),
http://www.ist-sims.org/

12. ITU-T Recommendation Z.120: Message Sequence Charts (MSC) (2004)
13. Mellor, S., Clark, A., Futagami, T.: Special Issue on Model-Driven Development. IEEE

Software 20(5) (2003)
14. Kramler, G., Kapsammer, E., Retschitzegger, W., Kappel, G.: Towards Using UML 2 for

Modelling Web Service Collaboration Protocols. In: Proceedings of the First International
Conference on Interoperability of Enterprise Software and Applications. Springer, London
(2005)

15. Kraemer, F.A., Herrmann, P.: Service Specification by Composition of Collaborations –
An Example. In: Proc. of the 2nd Intl. Workshop on Service Composition (Sercomp),
IEEE Computer Society, Los Alamitos (2006)

16. Ermagan, V., Krüger, I.H.: A UML2 Profile for Service Modeling. In: Proceedings of the
10th Intl. Conf. of Model Driven Engineering Languages and Systems (2007)

 Describing Component Collaboration Using Goal Sequences 29

17. OMG. UML Profile and Metamodel for Services (UPMS) RFP - soa/06-09-09, http://
www.omg.org/cgi-bin/doc?soa/2006-9-9

18. Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Proceedings
of the 5th IEEE International Symposium on Requirements Engineering (2001)

19. Yu, E.: Towards modelling and reasoning support for early phase requirements
engineering. In: Proceedings of the 3rd IEEE Intl. Symposium on Requirements
Engineering (1997)

20. Quartel, D.A.C., Stehen, M.W.A., Pokraev, S., van Sinderen, M.J.: COSMO: A conceptual
framework for service modelling and refinement. Information Systems Frontiers 9(2-3)
(2007)

21. Roman, D., et al.: Web Service Modeling Ontology. Journal of Applied Ontology 1 (2005)
(IOS Press)

22. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall, Englewood
Cliffs (1991)

23. Castejón, H.N., Bræk, R.: A Collaboration-based Approach to Service Specification and
Detection of Implied Scenarios. In: ICSE’s 5th Workshop on Scenarios and State
Machines: Models, Algorithms and Tools (SCESM 2006) (2006)

24. Web Service Modeling Ontology (WSMO). D2v1.3. WSMO Final Draft 21 (October
2006)

25. ITU-T Recommendation Z.100: Specification and Description Language (SDL) (2002)

Adaptive and Fault-Tolerant

Service Composition in Peer-to-Peer Systems

Vivian Prinz1, Florian Fuchs2, Peter Ruppel2, Christoph Gerdes3,
and Alan Southall3

1 Group of Applied Informatics - Cooperative Systems, Institute for Informatics,
Technische Universität München, Germany

2 Mobile and Distributed Systems Group, Institute for Informatics,
Ludwig-Maximilians-Universität München, Germany

3 Siemens AG, Corporate Technology, Information and Communications,
Intelligent Autonomous Systems

Abstract. Service-orientation enables dynamic interoperation of dis-
tributed services and facilitates seamless service provision or runtime
creation of new applications. This dynamic service composition is par-
ticularly powerful in peer-to-peer (P2P) systems which offer scalability
through self-management and autonomy. However, P2P service composi-
tion is nontrivial due to permanent peer churn and lack of central control.
Existing approaches reduce composite service initialization to an NP-
hard path finding problem. Thus, peer failure adaptation is costly and
runtime consideration of peer logons or load changes is not practicable.
This paper introduces logical peer groups for service composition. They
enable runtime composite service reconfiguration including the migration
of services to other peers. A prototype implementation is presented and
the algorithms are evaluated through both formal and empirical analysis.
The evaluation shows that the approach results in significant reduction
of computational complexity, improves fault-tolerance and enables adap-
tation of logons and load changes which has not been possible so far.

Keywords: Adaptive, reconfigurable, self-managing, quality of service-
aware applications, autonomic applications and systems, peer-to-peer
computing, service composition, service-oriented applications.

1 Introduction

In recent years the composition of services has been one of the major enablers for
many IT companies. Different companies automate order and payment proce-
dures. Portals, online maps or logistic applications offer information aggregated
from different providers. In [1], composability is even called the reason to be for
services because it allows them to be used for multiple purposes. In general,
services can be composed statically or dynamically. They are either selected and
put together once during composite service implementation, or selected and put
together at runtime, i.e. on demand. The latter approach enables runtime in-
tegration of intermediate services and permits, for example, the adaptation of

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 30–43, 2008.
c© IFIP International Federation for Information Processing 2008

Adaptive and Fault-Tolerant Service Composition in Peer-to-Peer Systems 31

current service usage context or the dynamic creation of new services out of
existing ones. In large-scale networks, single services are furthermore offered by
different providers. Dynamic service composition facilitates the selection of sub-
service providers with respect to parameters like availability, performance, load,
monetary costs or quality of service (QoS). In this paper, we will call these pa-
rameters execution properties. Finally, subservices of a composite service can be
exchanged during runtime. Consider a composite service comprising three sub-
services: one is an RSS reader that delivers text messages to a second subservice
that translates the text into another language. The third subservice converts the
translated text into speech the user can listen to. The user might want to hear
the latest news using a PDA while driving a car. If, for example, the text-to-
speech subservice gets overloaded meanwhile, the composite service can switch
to a better performing entity which also offers a text-to-speech service.

Our focus is this dynamic service composition in P2P systems. Service provi-
ders as well as users are regarded as peers of a fully decentralized distributed
system. That is, we assume that the network is not able to, or shall not, provide
a central controlling component but is self-managed. Thus composite services
can be provided without broker infrastructure and associated administration
costs. Moreover, there is no central component that can become a bottleneck or
even fail – essential when considering the evolution of distributed systems to-
wards large-scale networks and accompanied scalability requirements. However,
inter-peer service composition is nontrivial due to dynamic peer arrivals and
departures (churn) implying high failure probabilities and the required decen-
tralization.

Regarding related work, a lot of research has been done on optimized service
selection and execution, for example in the fields of load balancing and context-
aware computing. Concerning service composition, many central approaches ex-
ist, for example for grid environments or web services. Also for P2P systems
some solutions have been proposed: PCOM [2], A Scalable QoS-Aware Service
Aggregation Model for Peer-to-Peer Computing Grids [3] and SpiderNet [4] [5].
These approaches solve composite service initialization by regarding all possible
service paths between all service providing peers. They show that the corre-
sponding class of computational problems is NP-hard. This is basically due to
the multitude of possible paths that have to be computed using distributed
graph or tree algorithms. In addition, these paths have to be compared consid-
ering multiple constraints like QoS parameters. The only system that realizes
fault-tolerant P2P service composition is SpiderNet. It utilizes a Distributed
Hash Table (DHT) for decentralized information management and allows dy-
namic composition and proactive error detection for stateless services. Failures
are compensated by migrating the composite service, i.e. the service path selected
before, to a backup path. Backup paths are computed during initialization as
well and are monitored at runtime using messages along the paths. However,
migrating the whole service path on a single subservice failure is costly. None of
the existing approaches is able to adapt peer arrivals or variations of execution
properties because this requires expensive runtime re-initialization.

32 V. Prinz et al.

In this paper we describe a concept that supports adaptive and fault-tolerant
dynamic service composition. Peer churn and changes of execution properties
are detected at all times and may cause the migration of single services to other
peers. The solution is realized by interacting and self-organizing peer groups and
the underlying algorithms are based on nothing but local peer decisions. The re-
mainder of this paper is structured as follows: Section 2 introduces our concept
and explains the associated algorithms. Section 3 describes the prototype imple-
mentation of the system. Section 4 provides a formal analysis of the algorithms’
computational complexity as well as an empirical evaluation of our approach.
Section 5 concludes the paper and suggests future work.

2 Service Composition Based on Interaction Between
Logical Service Groups

In this section, we describe our concept for adaptive and fault-tolerant service
composition in P2P systems. Thereby, we assume the possibility to store, modify,
delete and search for information within the P2P network. Example solutions
for this discovery functionality are Pastry [6], Chord [7], CAN [8], Tapestry [10]
or Freenet [11]. We refer to information as resources and to distributed storage
as resource publishing. Furthermore, we assume that the P2P network is realized
using DHTs and thus enables the implementation of a publish-subscribe mech-
anism. Publish-subscribe mechanisms are, for example, proclaimed in [12,13].
They enable single peers to subscribe to a certain kind of resource. Hence, they
are notified, if a resource of that type is published, modified or deleted.

2.1 Basic Idea: Logical Service Groups

As explained in Section 1, existing solutions for service composition in P2P sys-
tems are very static. Service and backup paths are computed only once during
initial service composition and cannot be adapted at runtime because their re-
computation is too costly. The idea for a more dynamic service composition
solution is not to analyze all possible paths between the peers, but to regard
all peers providing a dedicated subservice as a group. Such a Logical Service
Group (LSG) is defined as the set of available peers that locally provide a dedi-
cated subservice. During subservice execution, one peer of the LSG executes the
subservice and n other group members monitor its heartbeat. The monitoring
peers are called watchdogs. Heartbeats are continuous messages being sent to the
watchdogs. They enable the watchdogs to detect if the executing peer has failed.
Figure 1 illustrates the members of a LSG and their roles. All peers providing a
subservice are group members and one of them is executing the subservice. The
group is part of a composite service comprising 4 subservices. Data to process,
for example RSS feeds, are forwarded between the groups. In general, every peer
can be a subservice providing peer in multiple groups. It might be able to execute
different subservices of a composite service and LSGs are a logical construct.

Adaptive and Fault-Tolerant Service Composition in Peer-to-Peer Systems 33

Fig. 1. Service composition based on LSGs

The formation of a LSG is carried out as follows: On a subservice request, the
requesting peer publishes a SubtaskResource. This resource specifies the subser-
vice to be executed including information about the composite service it is part
of. Above others, it contains input parameters of the subservice and require-
ments concerning peers’ execution properties. Every peer that participates in
the group-based execution of subservices subscribes to SubtaskResources it can
perform. As soon as a peer is notified about a corresponding subservice request,
it publishes a CandidateResource. The CandidateResource names it as a can-
didate for the subservices it can provide. Furthermore, it describes its current
execution properties. The group formation is carried out by an initial coordina-
tor. It collects information about all peers providing the subservice by searching
appropriate CandidateResources. Afterwards, it compares these information and
assigns the role of the executing peer to the best performing peer. The selection
criterion is given by the requirements specified in the SubtaskResource. Likewise,
it assigns the following n highest ranked peers the role of the watchdogs.

The best performing peer then takes over the subservice execution and the
group coordinator role. Because this peer is being monitored, fault-tolerant ser-
vice execution is guaranteed and the group coordinator is always existent. Dur-
ing subservice execution, the state of the subservice is periodically saved within
the ServiceStateResource. In case the executing peer fails, the best performing
watchdog continues service execution. Thereby, it obtains the current subservice
state from the ServiceStateResource. Moreover, the watchdogs are completed by
adding another peer. Consequently, failure adaptation takes place with no need
to search for a qualified peer first. Besides by peer failure, a subservice take-over
can also be initiated if a better performing peer becomes available. This is when
the group coordinator comes into operation. As soon as a candidate peer logs
on to the network, it is notified about the existing subservice request due to its
subscription to the SubtaskResources. It publishes its CandidateResource. By
subscribing to these CandidateResources, the coordinator knows if a new Can-
didateResource is published. It integrates the new candidate into the current
peer ratings. Apart from that, other peers’ execution properties can get better

34 V. Prinz et al.

or the properties of the executing peer can get worse because of dynamic load
changes for example. To handle this, the peers of the group keep their execution
properties in the CandidateResources up-to-date. If these resources are modified,
the group coordinator is also notified. Thus it is able to recognize if an exist-
ing group member should take over subservice execution. In all three cases, the
coordinator triggers appropriate role take-overs within the group if necessary.

2.2 Initial Service Composition

An environment that supports service composition has to provide two compo-
nents – a design component and a runtime environment. Our research focus is the
latter. We assume applications with graphical user interfaces exist that support
the generation of valid specifications of composite services and their require-
ments and that translate them into a composite service description the runtime
environment can interpret. Given such a composite service request, the runtime
environment has to perform the initial service composition. That means it has
to select an executing peer for each requested subservice and the selected peers
have to know each other to be able to forward data between the subservices.

Regarding the LSG approach, the requesting peer first publishes the Sub-
taskResource for the preceding subservice in the service chain. In the example
given in Section 1 the PDA publishes the one of the text-to-speech service. The
subservices and their order are read out of the interpretable composite service
description. Afterwards, the requesting peer carries out the formation of the first
LSG. As soon as the executing peer of the new LSG is identified, it publishes
the SubtaskResource of its preceding LSG, in our example for the translation,
and again performs its formation. The procedure is continued until the LSG of
the last subservice has been formed.

During these step-by-step LSG formations, the interpretable composite ser-
vice description is recorded in every newly published SubtaskResource so that
peers know which group to form next. Additionaly, every newly selected group
coordinator stores the structure of its LSG within a ServiceGroupResource and
publishes it. The identifiers of these resources are passed stepwise within the
SubtaskResources, too. Thus, all executing peers are able to subscribe to the Ser-
viceGroupResource of their successive LSG. The subscriptions facilitate the per-
manent addressability of a LSG, which becomes relevant during service execution.
The same way, the identifier of a resource containing the state of the entire com-
posite service is passed. If a group’s executing peer changes, the new one knows
if the composite service is still in the initial service composition phase – it must
only send heartbeats – or if subservice execution has to be continued. As soon as all
LSGs have been formed, the initial service composition is complete. Figure 2 shows
the core algorithm of our initial service composition approach. ICD represents the
interpretable composite service description. SR, SGR, CR and CSSR stand for
SubtaskResources, ServiceGroupResources,CandidateResources and the state re-
source of the composite service.

An important advantage of our initial service composition approach is that
the load for the service group formations is distributed amongst different peers.

Adaptive and Fault-Tolerant Service Composition in Peer-to-Peer Systems 35

Fig. 2. Pseudocode notation of the initial service composition algorithm

These peers are best performing peers of their service groups at least in terms
of their subservice’s requirements. Moreover, the initial service group formations
are executed fault-tolerantly. If the requesting peer fails, the composite service
is not required anymore. All further initial coordinators are executing peers of
their own service group. If they fail, a member of their LSG continues their role.
Hence, initial service composition is performed fault-tolerantly.

Enhancements. Our approach includes further processes carried out during
initial service composition: If a peer is selected for a dedicated subservice, it is
taken into account that its execution properties change and that it might not be
able to execute other subservices it could provide. In addition, single subservices
of a composite service can be marked optional. This way, one can determine
that a composite service is executed even though no peer is available that pro-
vides that subservice and fulfills its requirements. In our example, the translation
might be helpful for the user but not necessary to get the RSS feeds’ messages.
Initial service composition is also successful if single optional subservices are not
available. Finally, we described linear service chains to simplify matters. Our
concept also allows nonlinear subservice arrangements through nestings in the
(XML-based) interpretable composite service description and appropriate con-
ceptual extensions. However, a detailed explanation of these mechanisms would
go beyond the scope of this paper and is not needed to depict the core features
decisive to realize adaptive and fault-tolerant service composition.

2.3 Composite Service Execution

Besides the initial service composition a runtime environment supporting com-
posite services in P2P systems is responsible for the stable and fault-tolerant
execution of the subservices and for the data exchange between them. To start
composite service execution in our approach, the executing peer last determined
informs the requesting peer about the successful initial service composition.
Thereby it passes its ServiceGroupResource identifier which the requesting peer
then subscribes to. Afterwards, the requesting peer modifies the state of the

36 V. Prinz et al.

composite service so that it is now declaring its execution and triggers a ring
message indicating subservice instantiation. Every executing peer reads its suc-
ceeding executing peer out of the associated ServiceGroupResource to be able to
forward that message. As soon as the requesting peer receives the ring message
again, the composite service has been successfully instantiated.

During execution, peers may fail, their execution properties may change or
better performing peers may arrive. To adapt the resulting subservice take-overs,
the coordinator of every LSG saves the current structure of the group within the
ServiceGroupResource, i.e. who is the executing peer and which peers are in the
role of the watchdogs. On a subservice take-over, the new coordinator updates
these information. As a consequence, the preceding executing peer is notified due
to its subscription to that ServiceGroupResource. It reads the new processing
peer out of the modified ServiceGroupResource and updates the data link. Every
new executing peer first subscribes to that resource. Afterwards, it fetches the
current subservice execution state using the ServiceStateResource and continues
service processing. Thereby, adequate rollback mechanisms have to be estab-
lished to guarantee that no intermediate results get lost and no calculations that
were already saved in the current subservice state are repeated (see Section 3).

Enhancements. Our approach also integrates the adaptation of failures of en-
tire LSGs. They are monitored using detection messages along the ring of exe-
cuting peers. A LSG fails as soon as the last peer that was able to perform the
subservice can not fulfill the service requirements any longer or leaves the net-
work. The preceding executing peer establishes a connection to the next but one
LSG. Therefore, all ServiceGroupResources are stepwise forwarded during initial
service composition. If the subservice was optional, the execution of the compos-
ite service can be continued without adverse effects. Otherwise, the preceding
executing peer triggers a ring-message that indicates that the composite service
has to be aborted. If no necessary group failed, the completion of a composite
service is signalled by the requesting peer or by an executing peer that finalized
service execution. Figure 3 shows the pseudocode notation of the algorithms
applied during entire, exception-free composite service execution.

Fig. 3. Pseudocode notation of the composite service execution algorithm

Adaptive and Fault-Tolerant Service Composition in Peer-to-Peer Systems 37

3 Implementation

To show the applicability of our concept, we have implemented the Service Com-
position Framework (SCF). Because the project comprises 73 java classes and
more than 10000 lines of code, we only describe selected elements in this section.

3.1 The Service Composition Framework

For the implementation of the SCF we utilized the Siemens Resource Manage-
ment Framework (RMF) [9]. The RMF realizes basic features of a P2P network.
Above others, it provides the two functionalities our concept relies on: a fully
decentralized discovery and a publish-subscribe mechanism. Thus the SCF is
based upon the RMF. The SCF itself provides an interface for developers. Ev-
ery service that implements this interface can be executed as a subservice of a
composite service. The interface could be kept quite simple. A subservice has
to implement four methods that are used by the SCF to control its execution.
One that executes the service on passing parameters, a second that stops it, a
third that enforces a checkpoint of the current subservice state and a fourth that
returns the state. Every result is passed to the framework using a given method.
The framework then performs the result’s faultless forwarding in case a succes-
sive subservice exists. That is, it repeats the forwarding if a results’ receipt is not
acknowledged and does not enforce a checkpoint until successful transmission.
If the local peer fails and a result has not been forwarded, the related input is
processed again. Of course it can not be assumed that every subservice generates
elementary results but may, for example, work on continuous data streams. In
cases like this, developers have to forward their results themselves. Therefore,
another interface is provided. It declares a method through which the SCF passes
the identifier and the port of the successive executing peer both during initial
service composition and on executing peer changes.

By starting a dedicated class of the SCF, a host joins the RMF-network and
subscribes to SubtaskResources it can perform. The new peer is then able to
participate in composite service execution. To this end, the SCF implements the
roles of watchdogs, of executing peers and of (initial) coordinators and allows to
request a composite service. Also, it provides different simple comparator classes
like a CPU-comparator. Requesting peers refer to them when specifying required
execution properties within the (XML-based) composite service description. Co-
ordinators use them accordingly for peer comparisons. Comparator classes can
consider an arbitrary number of attributes and may prioritize them differently.

3.2 Test Environment and Example Services

To test the implemented mechanisms we developed a diversified test environ-
ment. The environment starts a variable number of peers and triggers a com-
posite service request. During initial service composition, it checks whether all
LSGs have been formed, whether the best performing peers send heartbeats
and whether the determined number of watchdogs is active. When the execu-
tion phase sets off, it tests if all groups have started execution. Additionally,

38 V. Prinz et al.

the environment integrates tests that stepwise change the execution properties
of the group members in such a way that a subservice take-over has to take
place. Furthermore, we have implemented tests that force peer failures in all
LSGs. All these further tests are executed during initial service composition as
well as during execution phase. They check whether the new best performing
peer resumed the role of the executing peer and sends heartbeats and whether
the determined number of watchdogs is active again. In addition, they test if
the new peer knows its successor and if its predecessor was notified about the
change. During execution, the resume of the subservice’s execution is checked as
well. Finally, the environment waits for finalization of the composite service and
verifies if all results have been forwarded completely and not redundantly.

For test purposes and to visualise the framework’s possible fields of appli-
cation, we have implemented different simple services, i.e. performing certain
calculations, and the mentioned example subservices – an RSS reader, a trans-
lator and a text-to-speech subservice. All composite example applications were
successfully executed using the test environment. Even if executing peers change
frequently, all results are forwarded and processed correctly. The system changes
the executing peers as soon as their execution characteristics degrade, better per-
forming peers become available or peers fail. The initial service composition and
the execution of composite services are performed correctly and fault-tolerantly
and all subservices are always executed by the best performing peers.

4 Evaluation

Having shown the applicability of our concept, we now focus on the efficiency of
the integrated mechanisms. Therefore, this section provides both an analytical
evaluation of the presented service composition approach and an experimental
evaluation to substantiate the formal results.

4.1 Formal Analysis

The analytical evaluation investigates the computational complexity of the pro-
posed approach. It aims to quantify the amount of computational resources
needed in relation to the problem instance specified by the number of peers,
services and so on. The complexity result will subsequently be compared with
the complexity of the corresponding SpiderNet algorithms (see Section 1).

The use of computational resources is modelled as cost. As our algorithms are
not tailored towards a particular DHT implementation, but only assume a DHT
with publish-subscribe functionality, we base the cost model on primitive DHT
operations. This way, the analytical results are independent from the character-
istics of a particular DHT implementation. We distinguish three cost types for
DHT operations: cpublish is the cost required for making a piece of information
available in the DHT for retrieval; csearch is the cost incurred when discovering
and retrieving a dedicated piece of information; csend is the cost for directly
sending a message to a particular peer. We will quantify the DHT operation

Adaptive and Fault-Tolerant Service Composition in Peer-to-Peer Systems 39

calls performed in our algorithms as well as those executed in SpiderNet to de-
termine cost functions. To simplify these functions, we make the following two
assumptions: The number of candidate peers is the same for each subservice and
the number of watchdogs is the same for each LSG. So we will use three different
variables: n denotes the number of subservices in the composite service, k is the
number of candidate peers for each subservice (which is equivalent to the size of
the LSG), and w denotes the number of watchdogs for each LSG.

Initial Service Composition. With respect to the previously introduced cost
model and variables, the initial service composition algorithm (see Section 2.2)
has the following cost function:

Tinitial(n, k, w) = (kn + 5n + 1)cpublish + (n + wn + kn + 1)csend + ncsearch.

One can argue that choosing two watchdogs for each LSG (w = 2) results
in sufficiently low probability for overall failure. Then Tinitial(n, k, w) can be
written as Tinitial(n, k) = O(kn). Thus, the complexity of the initial service
composition algorithm is linear in the total number of candidates for the com-
posite service.

Composite Service Execution. We distinguish between the exception-free
execution and monitoring of the composite service and the handling of different
exceptions. The exact cost function for the execution and monitoring algorithm
(see Section 2.3) has to include the total duration D of the composite service ex-
ecution. This is because it influences the number of ring messages and heartbeat
messages (interval Iring and interval Iheartbeat) used for failure detection:

Texec(n, w) = (n+2)cpublish+(D/Iring(n+1)+D/Iheartbeatwn+wn+2n+2)csend.

The intervals for heartbeat and ring messages are QoS parameters to be cho-
sen, for example, according to real-time requirements of a composite service.
With neglection of D, Iring and Iheartbeat and with w = 2 the cost function can
be written as Texec(n) = O(n). The complexity of composite service execution
and monitoring is linear in the number of subservices of the composite service.

Handling exceptions during execution triggers different further steps (see
Section 2.3). When execution properties of a peer change or a new peer becomes
available, adaptation incurs the following cost:

Tadapt(w) = 5cpublish + (2w + 2)csend + csearch.

If we again assume w = 2, this adaptation requires only constant cost: Tadapt =
O(1). Handling the failure of a service executing peer has the following cost,
which are again constant:

Tfailure = 4cpublish + csend + csearch, Tfailure = O(1).

Comparison to SpiderNet. The previously obtained complexity results are
now compared to the complexities of the corresponding SpiderNet algorithms

40 V. Prinz et al.

[4]. We chose SpiderNet because it is the only existing approach realizing fault-
tolerant service composition in P2P systems.

It can be shown that SpiderNet, which is also DHT-based, produces cost
T S

initial(n, k) = O(k2(n−1)) during initial service composition. This is in contrast
to Tinitial(n, k) = O(kn) in our approach. For example, assume a scenario where
the composite service is composed of 5 subservices and there are 10 candidate
peers for each subservice. Then SpiderNet is in the order of 400 calls to primitive
DHT operations, while our approach only requires 50 calls.

Analyzing the SpiderNet algorithms for service execution yields the cost func-
tion T S

execution(n)=O(n). This is in the same order as our approach (Texecution(n)
= O(n)). However, adaptation to failures requires more resources than our ap-
proach. This is because SpiderNet does not use watchdogs, but monitors multiple
backup paths. As a result, exception handling requires to change not a single
subservice but the whole service path and more monitoring messages are required
in order to achieve the same level of fault-tolerance.

In conclusion, analyzing the complexities of the proposed algorithms showed
that the introduction of LSGs results in significant reduction of complexity dur-
ing initial service composition. Furthermore, the use of watchdogs for detecting
failures results in higher fault-tolerance without increasing complexity. These are
additional achievements to the newly introduced ability to adapt performance
variations and peer arrivals.

4.2 Empirical Analysis

In this section we describe the results of our empirical analysis and evaluate if
the results confirm our formal findings. To this end, we have carried out over
8700 measurements of our approach’s core procedures with the aid of the SCF.

Initial Service Composition. In Section 4.1 we concluded that the complex-
ity of the initial service composition algorithm is linear in the total number of
candidates for the composite service. To verify this, we have measured the dura-
tion of initial service composition for two, six and ten candidates per LSG with
up to twelve subservices. We raised the number of subservices stepwise recording
100 measurements each time which results in 3600 measurements. Figure 4 (a)
charts initial service composition duration for a varying total number of candi-
dates of the composite service (kn). It can be seen that it makes a difference if
the total number of 20 candidates arises from 2 subservices with 10 candidates
each or from 10 subservices with 2 candidates which is due to the stepwise group
formations. Thus the graphs grow linear, which verifies our formal findings.

Composite Service Execution. The computational complexity of exception-
free composite service execution depends on the duration of the composite ser-
vice. Hence, we focus on the complexity of mechanisms realizing adaptive and
fault-tolerant execution here.

We have formally shown that adaptation requires only constant cost when
peers’ execution properties change or new peers become available. Figure 4 (b)

Adaptive and Fault-Tolerant Service Composition in Peer-to-Peer Systems 41

Fig. 4. Experimental results for initial service composition (a) and adaptation of
changes of execution properties (b)

Fig. 5. Experimental results concerning peer failure adaptation

illustrates the duration measurements for this adaptation based on 1200 mea-
surements taken for LSGs with up to 60 members. During formal evaluation,
we neglected the costs for integrating a candidate into the current peer ranking
because they depend on the subservice’s selection criteria. Regarding the experi-
mental results one can see that duration for adaptation behaves almost constant.
The slight raise is caused by the growing number of peers to be compared with
the candidate. Thus, our formal results have been confirmed.

Concerning the handling of failures of service executing peers, we arrived at
the conclusion that this again requires constant cost. Figure 5 charts our results
retained from 3900 measurements of failure adaptation duration using varying
heartbeat intervals. Figure 5 (a) shows that the number of watchdogs does not
influence the adaptation duration. In figure 5 (b) we contrast the duration for
failure adaptation with the current heartbeat threshold. This threshold is directly
derived from the heartbeat interval. It represents the time the watchdogs shall
wait for the next heartbeat of the executing peer, whereby a little time interval

42 V. Prinz et al.

is added to compensate delays in message passing. It becomes apparent that
average adaptation duration is partially even below the current threshold. In this
context one has to be aware that an executing peer can fail shortly before sending
its next heartbeat. Hence, the next heartbeat is overdue soon. Nevertheless,
one can state that the average adaptation duration is even below the current
heartbeat threshold constant which is in agreement with our formal results, too.

5 Conclusion

We have presented an approach for adaptive and fault-tolerant dynamic service
composition in P2P systems. Composite services are provided by interacting and
self-organizing peer groups. Within these groups, watchdog peers monitor sub-
service executing peers and coordinators detect peer arrivals and variations of
peers’ execution properties. If necessary, they cause the migration of subservices
to other peers. The underlying algorithms are fully decentralized, i.e. they are
only based on local peer decisions. The concept has been implemented and for-
mally and empirically evaluated. Amongst others, we were able to show that the
introduction of service groups results in significant reduction of computational
complexity. The use of watchdogs for detecting failures results in higher fault-
tolerance without increasing complexity. Moreover, all data are transferred and
processed correctly during composite service execution even if single subservices
are often migrated. Our approach is the first one that enables the adaptation of
peer arrivals and changes of their execution properties.

A future field of interest is the consideration of deviation from service re-
quirements if no peer is able to fulfill them. Another topic is the integration of
a further selection level. One can think of the composition of services that in-
tegrate advertisement into content like audio or video and services that provide
that kind of media content. Thus, users might pay less for the content. Now it
can be left open which advertisement service to integrate. The decision is made
during runtime and can depend on information about the user’s end device or
the user’s profile. Users provide these information due to cheaper content. This
way, advertisers can be offered a dedicated target group. Because service compo-
sition is P2P-based, advertisers can furthermore be arbitrary users that publish
the existence of the advertisement service – for example a student giving classes
in math to pupils living in his neighbourhood. Our concept therefore has to inte-
grate a further selection level: before selecting a peer for service execution it must
be determined which service of a specified kind, i.e. which kind of advertisement
service, to integrate.

References

1. Singh, M., Huhns, M.: Service-Oriented Computing. John Wiley & Sons Inc.,
Chichester (2005)

2. Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM - A Component System
for Pervasive Computing. In: Proceedings of the 2nd IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom 2004), IEEE Press,
Orlando, USA (2004)

Adaptive and Fault-Tolerant Service Composition in Peer-to-Peer Systems 43

3. Gu, X., Nahrstedt, K.: A Scalable QoS-Aware Service Aggregation Model for Peer-
to-Peer Computing Grids. In: Proceedings of IEEE International Symposium on
High Performance Distributed Computing (HPDC 2002), IEEE Press, Edinburgh,
Scotland (2002)

4. Gu, X., Nahrstedt, K., Yu, B.: SpiderNet: An Integrated Peer-to-Peer Service Com-
position Framework. Technical report, Department of Computer Science. Univer-
sity of Illinois at Urbana-Champaign (2003)

5. Gu, X.: A Quality-Aware Service Composition Middleware. PhD thesis, Depart-
ment of Computer Science. University of Illinois at Urbana-Champaign (2004)

6. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

7. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Liben-Nowell, D., Dabek,
F., Balakrishnan, H.: Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. IEEE/ACM Trans. Netw. 11, 17–32 (2003)

8. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A Scalable
Content-Addressable Network. In: Applications, Technologies, Architectures,and
Protocols for Computer Communication, ACM Press, San Diego (2001)

9. Rusitschka, S., Southall, A.: The Resource Management Framework: A System
for Managing Metadata in Decentralized Networks Using Peer-to-Peer Technology.
In: Moro, G., Koubarakis, M. (eds.) AP2PC 2002. LNCS (LNAI), vol. 2530, pp.
144–149. Springer, Heidelberg (2003)

10. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical report, Computer Science Division, U.
C. Berkeley (2001)

11. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A Distributed Anony-
mous Information Storage and Retrieval System. In: Federrath, H. (ed.) Designing
Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 46–66. Springer, Heidelberg
(2001)

12. Terpstra, W., Behnel, S., Fiege, L., Zeidler, A., Buchmann, A.P.: A peer-to-peer
approach to content-based publish/subscribe. In: Proceedings of the 2nd interna-
tional workshop on Distributed event-based systems, ACM Press, San Diego (2003)

13. Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: Scribe: A large-scale
and decentralized publish-subscribe infrastructure. In: Crowcroft, J., Hofmann, M.
(eds.) NGC 2001. LNCS, vol. 2233, pp. 30–43. Springer, Heidelberg (2001)

Decentralised QoS-Management in Service

Oriented Architectures

Markus Schmid and Reinhold Kroeger

Wiesbaden University of Applied Sciences
Distributed Systems Lab

Kurt-Schumacher-Ring 18, D-65197 Wiesbaden, Germany
{schmid,kroeger}@informatik.fh-wiesbaden.de

Abstract. Traditional hierarchical Service Level Management (SLM)
frameworks fail to cope with the challenges imposed by the runtime dy-
namics of Service Oriented Architectures (SOA). This paper introduces a
decentralised management approach that successfully uses emerging self-
management techniques to realise a flexible SLM system and presents
an architecture that implements this approach. The architecture con-
sists of a modular self-manager framework that provides the basis for
component-level and workflow-level management. It provides sensor and
effector modules to monitor and manage different classes of applications.
Integration with existing SOA components is based on the Service Com-
ponent Architecture (SCA). The presented framework has been proto-
typically implemented and is currently evaluated in terms of efficiency
and scalability.

1 Motivation

Traditionally, Service Level Management (SLM) is the discipline concerned with
monitoring and management of processes and applications according to agreed-
upon Quality of Service (QoS) criteria. In service provisioning relationships,
provider and customer agree on QoS criteria and failure penalties in formal con-
tracts, called Service Level Agreements (SLAs). SLAs contain SLA Parameters
that define QoS aspects to consider and Service Level Objectives (SLOs) to be
met regarding these parameters.

At runtime the agreed-on SLOs are monitored by a dedicated SLM architec-
ture. Based on this monitoring information administrators and operators take
care of necessary system reconfigurations. In current installations, a SLM ar-
chitecture is often integrated with large-scale enterprise management systems,
e.g. HP OpenView, IBM Tivoli or CA Unicenter. These systems started as man-
agement frameworks, and today consist of a number of more or less closely
integrated components. The frameworks originate from the network manage-
ment area and therefore implement a centralised, relatively static, and strictly
hierarchical management approach.

However, looking at SLM on the application-level, emerging Service Oriented
Architectures tremendously increase the overall complexity of enterprise appli-
cations, both in terms of the number of components involved and in the overall

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 44–57, 2008.
c© IFIP International Federation for Information Processing 2008

Decentralised QoS-Management in Service Oriented Architectures 45

runtime dynamics of the resulting system. In addition, the current trend towards
virtualisation of computing resources adds another layer with dynamic bindings
and thus aggravates the matching of application level failures to physical re-
sources in large-scale systems.

In this paper, we present a decentralised and adaptive SLM architecture for
dynamic SOA-based applications. The architecture employs self-management
techniques to realise SLM for individual services. The structure of the manage-
ment system automatically adapts to the SOA’s business architecture.

The paper is structured as follows: section 2 describes the characteristics of
emerging SOAs and presents commonly used implementation technologies. In
section 3 we discuss challenges for SLM in SOA environments and give a short in-
troduction to currently emerging self-management approaches. Our decentralised
SLM architecture, which in parts relies on self-management, is presented in
section 4. This section also gives a description of implementation details. Re-
lated work is discussed in section 5. The paper closes with a conclusion and a
description of future work.

2 Service Oriented Architectures

Traditionally, multi-tier architectures are used to implement large-scale enter-
prise applications. They provide a clear separation of presentation, business logic
and data storage, which alleviates the impact of a change in one of these tiers
regarding the rest of the application. Multi-tier architectures are often based on
standard middleware, e.g. J2EE or CORBA, with relatively static component
bindings. Benefit of a multi-tier architecture is the stability of the interfaces
between components in different tiers. A drawback however is the inability to
perform quick reorganisations as business needs change – the rather static design
of a multi-tier application results in an inability to quickly follow changes in the
overall organisational structure of an enterprise. For that reason a more flexible
and dynamic enterprise software architecture has evolved in recent years:

Independent and loosely coupled services define the building blocks of a Ser-
vice Oriented Architecture. All services in a SOA environment are accessible in
a standardised way, as they inter-operate based on a formal interface definition
which is independent of the underlying computing platform and programming
language. Services are dynamically composed into business workflows to form
applications. This breakup into workflows and (shared) services however makes
the concept of strictly separated applications dispensable.

At runtime, workflow descriptions are interpreted by a workflow management
system (WfMS) that invokes the participating services. A major design goal for
SOA is to bring the architecture of enterprise IT applications in line with the
enterprises’ organisational structure. Thus, while services are considered as static
entities, SOA workflows may be adapted to business needs and thus can change
on a regular basis. In todays B2B scenarios SOA workflows can even span across
administrative boundaries of organisations. From an IT management perspective
this complicates the enforcement of quality-of-service parameters.

46 M. Schmid and R. Kroeger

Looking at the technical realisation of a SOA we distinguish several abstrac-
tion layers within the architecture (see fig. 1). At the lowest layer are the oper-
ational systems, networked hardware resources, operating systems and so forth.
These resources are utilised by enterprise components, which themselves provide
service interfaces. The second layer, called service layer, which we can also find
in traditional multi-tier enterprise applications, is the typical domain of exist-
ing hierarchical SLM-approaches for applications. On top of the service layer we
find the workflow orchestration layer, which dynamically involves the underlying
services. Service interfaces hide all implementation details from the workflows
in this layer. Workflows do also provide a service interface to the outside world
and thus may themselves be accessed by other workflows in the same way like
basic services. This allows to design complex, nested workflows.

Today, common technologies

Fig. 1. Technical layering of a SOA

for implementing a SOA environ-
ment are Web Services based on the
Web Services Description Language
(WSDL) for the description of service
interfaces, SOAP as communication
protocol, and the Business Process
Execution Language (BPEL) [1]
for the description of business pro-
cesses and workflows. BPEL is an
XML-based notation that defines a
number of so-called BPEL activi-
ties. Activities represent single steps
of a workflow, e.g. synchronous or
asynchronous service invocations,
variable assignment and evaluation,
case differentiations, loops, etc. BPEL
activities are divided into basic activ-
ities that include service invocations

and other straight-forward operations, and complex activities which wrap a
number of basic activities (e.g. loops). Regarding SLM on the workflow layer,
BPEL activities are of special interest, as they reflect the progress of the real-world
business activities. In terms of QoS observation, complex BPEL activities can
be expressed as a combination of basic activities. QoS characteristics of these
activities currently can be monitored, but a reconfiguration of services (accessed
through BPEL activities) according to SLA requirements is difficult in dynamic
environments (see[2]).

The Service Component Architecture (SCA) [3] is a specification that allows
to create a standardised view on services, workflows and their static interdepen-
dencies within a SOA. As such SCA complements workflow modelling languages,
like e.g. BPEL, which concentrate on runtime aspects of component interactions.
SCA Revision 1.0 has been specified by the Open SOA Collaboration1 , an industry

1 See http://www.osoa.org for details.

http://www.osoa.org

Decentralised QoS-Management in Service Oriented Architectures 47

consortium that consists of a number of IT companies with SOA activities (e.g.
IBM, Sun, Oracle, SAP, and BEA). Further standardisation of SCA in the mean-
time has been transferred to OASIS.

SCA models services and workflows as SCA Components. These components
comprise any number of interfaces, named SCA Services, and dependencies (SCA
References) to other SCA services. A dependency between two components is
named SCA Binding. In addition SCA components can specify a number of static
SCA properties to be accessed during runtime.

SCA components and their bindings can be grouped into an SCA composite,
which hides its inner structure from the outside and thus can be handled the
same way as a plain SCA component. This allows to create recursive structures
of SCA composites within a SOA. Services and references of SCA composites
are specified by propagation of component interfaces or references.

Figure 2 depicts the graphical no-

Fig. 2. Example SCA composite compris-
ing three SCA components [3]

tation of an SCA composite ABC,
which comprises three SCA compo-
nents. The composite offers a service
a’, which is propagated from the con-
tained SCA component A. A also holds
a Property P1. In addition, the com-
posite defines bindings between the
components A, B and C and prop-
agates the reference d of C to the
outside.

In order to support administrative
tasks, SCA defines the concept of
SCA Domains. Common policies can
be applied to all domain entities. Cur-
rently SCA assumes that within one SCA domain components and composites
of just a single vendor are deployed. This allows vendors to implement propri-
etary binding protocols. Currently SCA composites cannot spread across do-
main boundaries, however inter-domain communication between components is
possible.

To date, SCA defines a number of different mappings for component imple-
mentation (SCA implementation bindings): there are Java and C++-bindings,
but also bindings for BPEL, Enterprise JavaBeans (EJB), Java Messaging Ser-
vice (JMS) and Spring. The component structure, bindings and services are
detailed in an XML-based Service Component Description Language (SCDL)
descriptor which is interpreted by an SCA runtime in order to instantiate the
defined implementation bindings.

3 Necessity for Self-management

For several reasons a strictly hierarchical and centralised approach is not appli-
cable for establishing SLM within a SOA:

48 M. Schmid and R. Kroeger

(1) Because of the flexible, dynamic and compositional structure of a SOA, tradi-
tional static management structures cannot adapt fast enough to the system
dynamics.

(2) SOA environments implement large scale processes. Traditional centralised
management approaches with semi-automatic problem solving strategies do
not scale sufficiently to meet SOA demands.

(3) A SOA may well spread across enterprise boundaries and therefore also
across management domains.

(4) SLAs may be defined on different abstraction layers (e.g., for parts of work-
flows, or single services). Conflict resolution strategies must take organisa-
tional boundaries into account.

An SLM architecture for SOA has to consider the complexity of a SOA en-
vironment while it has to cope with permanent changes in composition and
cooperation.

Recently, self-management approaches have become popular, because they
aim at reduced management complexity (for the human administrator) and in-
creased scalability. In addition, the introduction of self-managing system com-
ponents allows to establish a decentralised management architecture and thus
to provide increased stability on a global level.

Self-management projects the principles

Fig. 3. Structure of an autonomic
manager, as defined by [4]

of autonomic computing to the domain of
IT-management. [5] gives a compact overview
of current challenges in the self-management
domain. Self-management summarises ap-
proaches for autonomic reconfiguration, error
recovery and optimisation of system be-
haviour of hard- and software components. [4]
describes relevant attributes of self-managed
systems as Self-X Properties. In contrast to
traditional management architectures, where
a human administrator controls the system, self-managed systems are controlled
by algorithms that – within certain constraints – operate autonomously.

Figure 3 depicts the principle structure of an autonomic manager. The man-
ager is loosely coupled with a managed system through well-defined sensor and
effector interfaces. Sensors are used to retrieve information about the current
state of the system, effectors are used to dynamically reconfigure the system
with the aim to drive it to a desired state. A manager may for example change
a systems’ strategy in terms of CPU and memory allocation, or may trigger the
reinitialisation of a certain sub-module.

In a self-management setting, the autonomic manager and the managed sys-
tem form a unit: the self-managed system. Such a system can again offer high-
level sensors and effectors to the outside world, thus reducing the globally visible
complexity of the system. As a result, a self-managed architecture can consist of
several layers of control loops with increasing levels of abstraction.

Decentralised QoS-Management in Service Oriented Architectures 49

Self-management alone however does not provide sufficient adaptability to
global business goals. For that reason we suggest to apply self-management
techniques only to SLM on the service layer of a SOA environment and to
align the overall management architecture to the structure of the SOA’s business
processes.

4 Decentralised Management Approach

4.1 General Approach

A flexible SLM architecture for SOA environments has to meet the challenges
described in section 3. Our SLM approach for SOA applications aims at pro-
viding scalability and flexibility through its decentralised structure, which uses
self-management mechanisms for management automation at the service-layer.
The SLM architecture automatically aligns with the structure of the business
processes defined, as each SOA business component (that is all corresponding
workflows and services) is associated with a Manager component, which is re-
sponsible for monitoring the components’ behaviour with regard to its previously
defined QoS requirements. Each manager component offers an interface for com-
municating QoS requirements.

Our approach realises a logically layered SLM management architecture, as
managers associated to workflow components communicate with the managers
of the participating services in order to enforce the QoS requirements that have
been defined for a workflow. QoS requirements are represented as SLAs, which
can be specified for workflows or individual services. Each manager gets assigned
one or more individual SLOs, in the following termed iSLOs. The approach uses
WSLA [6], an XML-based specification for SLA description as a formal notation
for SLAs.

In the following, the underlying common architecture for service and workflow
managers is presented. Afterwards, we describe the functionality offered by man-
agers for services and managers for workflows. Last, we present the integration
of our architecture with SCA-based SOA components.

4.2 Generic Manager Architecture

In compliance with the IBM reference architecture in [4], we have developed
a modular self-manager framework that provides a customisable basis for the
managers on the service and the workflow layers.

The core manager framework supports three different kinds of extension mod-
ules (see fig. 4 for details): event modules, action modules, and control
modules. Event modules possess their own threads and thus are able to re-
act actively to changes within the environment, e.g. by creating internal mes-
sages. Action modules are passive; they act – triggered by internal messages
– by analysing application-specific sensors, or performing management tasks.
Sensors can be realised using either event modules (push model) or action

50 M. Schmid and R. Kroeger

modules (pull model). Application-specific actuators are realised through action
modules.

Control modules form the “brain” of the self-manager as they contain the
management knowledge and implement control algorithms. Control modules
act periodically or are triggered by incoming messages. Management decisions
are communicated to other modules using the internal messaging capabilities.

At startup the manager core starts a

Fig. 4. Modular architecture of
the underlying management frame-
work

module manager component, which then in-
stantiates the configured extension modules
and controls their lifecycle. Each instantiated
extension module is in one of the states DOWN,
UP, or ERROR, the module manager regularly
checks the state of the modules and is able to
stop and reinstantiate modules that are in the
ERROR state. Dependencies on the availabil-
ity of other modules are also handled by the
module manager (e.g. relevant event and ac-
tion modules are to be started usually before
the corresponding control module). Module
configuration is remotely accessible through
a management interface, which in principle
allows runtime reconfiguration and reinstan-
tiation of manager modules.

Fig. 5. Overall architecture of a manager component

Managers on the
service andworkflow
layers are designed
to integrate into an
SCA-based SOA as
SCA components
(see fig. 5). Each
manager consists of
the core manager
described above, a
number of extension
modules, and an
SCA adapter that
provides SCA-compliant connectivity to other components, e.g. by offering a
management interface m that is used for communicating QoS requirements.

Depending on the position of the manager in the architecture, its function-
ality is enhanced with one or more task-specific extension modules, namely for
(A) SLA distribution, (B) SLA monitoring and escalation, and (C) SLA
enforcement.

In the following we discuss the assignment of these management tasks to
service and workflow managers.

Decentralised QoS-Management in Service Oriented Architectures 51

4.3 Service Managers

For service managers, SLA monitoring (B) is performed with the help of ap-
propriate event and action modules. Usually SOA services are realised based on
enterprise software stacks that also provide standardised monitoring and man-
agement interfaces (e.g. [7,8,9]).

Several action and event modules have been implemented, that allow a pow-
erful interaction with management interfaces, typically available in the domain
of business-critical applications:

– A Web Services Distributed Management (WSDM) [10] module handles
generic Web Services management invocations, implementing the Manage-
ment of Web Services (MOWS) part of WSDM.

– The Web-based Enterprise Management (WBEM)/Common Information
Model (CIM) [11] module allows the self-manager to act as a CIM client.

– A Java Management Extensions (JMX) [12] module allows to control any
JMX-instrumented application.

– An Application Response Measurement (ARM) [13] module can retrieve
performance-related information (e.g. response times) from ARM-instrumen-
ted applications.

– Command-execution supports the execution of shell scripts and other locally
available executables.

Due to the modular architecture of the framework additional modules can be
implemented without much effort.

SLA monitoring and escalation is performed by each manager in a sepa-
rate SLA parameter-specific control module. A manager permanently monitors
whether the iSLOs defined for the service are met, and – in case of a violation –
notifies the requesting party (the manager, which communicated the SLA).

SLA enforcement (C) is solely performed by managers on the service layer.
In order to fulfil the iSLOs that have been agreed on, a manager uses self-
management techniques to reconfigure its managed service. Reconfiguration
makes use of application specific interfaces (symbolically depicted as mi in fig. 5)
and may comprise dynamic resizing of application clusters, reallocation of re-
sources, migration of virtual machines, or other highly component-specific tasks.
Therefore, it is impossible to specify a generic SLA enforcement module, however
managers typically implement a specialised controller module for the manage-
ment algorithm and can possibly utilise existing action and event modules.

In order to customise a manager for controlling a software component that
provides a service, a service vendor has to select appropriate event and action
modules for monitoring and control of the service. As an example, one would
probably choose the JMX module to control a Java-based service implemen-
tation. Performance monitoring of a service that runs on an IBM WebSphere
application server can be achieved using the ARM event module as WebSphere
offers an ARM-compliant performane monitoring interface. In addition, the con-
trol algorithm that is used for SLA enforcement has to be customised for the

52 M. Schmid and R. Kroeger

management of the software component, i.e. to reflect the possible reconfigura-
tions offered by the software components’ JMX interface.

In [14] we give an example for the customisation of a service manager com-
ponent by describing an example SLA enforcement mechanism for a dynami-
cally resized Cluster of JBoss application servers that uses a predecessor of the
presented management framework: The approach minimises the resource con-
sumption of the JBoss servers while still granting a maximum response time
for the requests served. For this management scenario a state machine acts as
self-management controller for the cluster, the communication with the JBoss
cluster is realised based on ARM and CIM/WBEM modules.

4.4 Workflow Managers

SLA distribution (A) is a task primarily assigned to managers that are respon-
sible for workflow components. SLAs that are assigned to a workflow need to be
adequately distributed to the services that are involved in executing the work-
flows’ steps. The distribution of the SLA comprehends an SLA parameter-specific
fragmentation of the original SLA into iSLOs for the individual services and can
e.g. take historical data into account. Afterwards, the iSLOs are communicated
to the managers of the participating services via the SCA adapter.

SLA distribution has to take into account, that services offered by external
providers are typically accessed with a fixed SLA (that has been previously nego-
tiated by the parties), which cannot be manipulated by the SLM system. Such
an SLA is treated as constant in the fragmentation process. In addition, also
fully unmanaged services can be invoked by a workflow. Such services introduce
a certain degree of uncertainty regarding the overall QoS behaviour of the work-
flow. Unmanaged services initially are assigned a random iSLO which is later
adjusted according to monitoring information.

Fig. 6 gives an example for the process of SLA fragmentation and distribu-
tion. We discuss the fragmentation exemplarily for an SLO tmax that limits the
maximum response time of the workflow. Fig. 6, part a) depicts the graphical
representation of a workflow that invokes four different services, C1 - C4. After
the request to C1 has returned, C2 and C3 are executed in parallel in a loop.
Afterwards the service C4 is invoked.

Fig. 6, part b) shows

Fig. 6. SLA fragmentation example

the overall structure of the
workflow, which is used to
fragment the global SLO into
iSLOs for the participating
services. Initially, tall is com-
posed of three components
ta, tb and tc, where ta de-
scribes C1 and tc describes
C4. tb = n ∗ tba represents

the loop execution time, being n the number of iterations and tba the maximum
execution time of C2/C3. Ideally, ta, tba, tb, and n are estimated from historical

Decentralised QoS-Management in Service Oriented Architectures 53

data, which allows to proportionally fragment the SLO into iSLOs for C1 - C4. If
no historical data is available, the proportions for the fragmentation have to be
selected randomly and need to be readjusted later.

As for managers on the service layer, SLA monitoring and escalation (B) is
executed by each manager on the workflow layer in a separate control module. In
order to increase the overall system stability, a workflow manager only sends a
notification in case the SLA for the workflow is violated, but does generally not
forward notifications from individual participating services. In case a workflow
manager receives a notification from a participating service, SLA distribution is
triggered again to perform a restructuring of the existing SLA fragmentation,
aiming at relaxing the iSLO of the component that sent the notification.

For workflow managers SLA monitoring is implemented generically for each
supported SLA parameter. Workflow managers internally monitor workflow
progress and calculate SLA parameters like workflow response times and
throughput from this data.

4.5 SCA Integration

In order to integrate man-

Fig. 7. Managed SCA Composite

agers transparently with ex-
isting business components,
we make use of the SCA com-
position feature. Figure 7 de-
picts the association between
a business component and a
manager: Manager and busi-
ness component are grouped
into a single SCA composite,
which propagates both the

interface of the business component and the managers’ management interface to
the outside world. In addition, existing references to other components are also
propagated by the SCA composite. We assume that workflow components are re-
alised using the SCA BPEL implementation binding as the manager component
at runtime needs to access structural workflow information; services may use
any SCA binding available. The major advantage of the composition of business
component and manager into a managed SCA composite is, that the existence
of the management component remains transparent for management-unaware
services that reference the business component. A drawback is an increase in
the response time of requests sent to the managed SCA composite, that is in
parts caused by the transport protocol used (e.g. one additional Web Service call
between composite and service) but also depends on the overhead of the SCA
runtime. We performed measurements for a worst case scenario that consists of
an empty service implementation, which provides an interface with two double
parameters. On an Intel Pentium M, 1.6 GHz (Apache Tuscany SCA Runtime,
Apache Tomcat 5.5 AS) we measured a mean response time of 3.02ms per in-
vocation for the pure service implementation and 8.75ms for a composite that

54 M. Schmid and R. Kroeger

references this service. This response time contains an overhead of 2̃ms for SCA
processing. In a real world SOA setting these calls however typically take much
longer as services perform complex business tasks while the SCA processing
overhead remains constant.

In a SOA, services are

Fig. 8. Managed SCA composite with QoS proxy
component

typically accessed by multi-
ple workflows at a time. The
presented management archi-
tecture is able to cope with
several concurrent SLAs, by
using a QoS-Proxy mecha-
nism as depicted in fig. 8.
Here a management proxy
component offers several ser-
vice queues, one for each SLA
to be met. The proxy ref-
erences the business inter-
face of the managed service
and propagates this interface
multiple times, thus offering the same service in different qualities. External ser-
vices reference one of the QoS proxys’ interfaces instead of the managed service
itself.

The manager however can implement a number of different strategies for
SLA enforcement, e.g. priority-based enforcement, or approaches known from
the networking area such as weighted fair queueing or bandwidth management.

4.6 Prototypical Implementation

The presented self-management framework has been prototypically implemented
in Java. Internal communication is based on a lightweight, process-local Java
Message Service (JMS) implementation. The integration with SCA is based on
the Apache Tuscany SCA project runtime. The SLA distribution functionality
is based on the BPEL parser of the Apache ODE BPEL engine.

In our lab the architecture has been applied to example scenarios for SLA
enforcement that have been implemented based on Apache Tomcat and JBoss
as underlying Middleware. In this context, we used Apache Axis2 and JBoss for
Web Service provisioning. JBoss and Tomcat were equipped with fine-grained
performance monitoring sensors using the ARM API (see [9] for details). We
implemented an actuator module to start and stop server instances on differ-
ent hosts. In addition, we designed a rule-based control module that uses the
ARM performance monitoring data in combination with the actuator module to
increase or reduce the size of the managed server cluster according to the aver-
age response time measured. The control module was able to keep the service
response times within a predefined range under different load conditions.

The global stability of the SLM framework depends on constant response
times of the participating services. In cases where we observe a high standard

Decentralised QoS-Management in Service Oriented Architectures 55

deviation from the average response time, workflow managers tend to unneces-
sarily recalculate iSLOs. However this can be minimised by defining appropriate
thresholds for workflow managers or alternatively by adding a predefined safety
margin to the iSLOs assigned to individual services. In addition we observed
that it is essential that service managers pause after executing a reconfiguration
in order to allow the changes to take effect. In the example above, the start of a
new server instance took about 40s – the manager had to take this into account
in order not to trigger the start of additional instances in the meantime.

5 Related Work

Many architectures for SLM-enforcement do exist for multi-tier environ-
ments [15,16,17] or single enterprise components [18,19]. Some of these archi-
tectures already employ controllers that are able to manage certain aspects of
the system without human interaction (self-management, autonomic manage-
ment). To give an example, [19] uses a feedback-control approach for autonomic
optimisation of Apache Web server response times. In contrast to our architec-
ture these approaches mainly focus on the service layer, i.e., they are not capable
of dealing with changing SOA workflows.

[20] discusses the topic of QoS enforcement in Web Services environments
and points out current challenges in this area. A management architecture that
itself is organised as a SOA is discussed in [21]. The authors describe their SOA-
based management approach as a novel way to integrate different management
applications but do not provide automatic alignment with changes in the business
architecture.[22] presents a method for analysing the effects of service-local SLAs
on global business processes. The approach gives hints for future investments (in
terms of resources) to improve the overall QoS. It could therefore complement
our work as it assists long-term management decisions on business restructuring.

In [23] the authors present WSQoSX, an SLM architecture for SOA environ-
ments. WSQoSX consists of a number of management components that control
the lifecycle of SOA components, e.g. service discovery, selection, and work-
flow assembly. The architecture focuses on QoS-dependent service binding, i.e.
the management system evaluates workflows and selects participating services
based on their response time to fulfil predefined SLOs. When compared to our
SLM architecture for SOA management, WSQoSX focuses on scenarios where
different services with equivalent functionality are available and does not deal
with the possibility of QoS-improvement for individual services. Thus WSQoSX
focuses on B2B scenarios where multiple providers offer standardised services to
choose from, whereas our approach focuses on SLM in inner-enterprise scenar-
ios. In contrast to our approach, WSQoSX is realised as a number of centralised
services, which may eventually lead to scalability issues.

6 Summary and Conclusions

We presented a decentralised management approach for SOA environments that
uses emerging self-management techniques to realise a flexible SLM system. The

56 M. Schmid and R. Kroeger

SLM architecture consists of a modular self-manager framework that provides
the basis for component-level and workflow-level managers. The framework pro-
vides a number of sensor and effector modules to monitor and manage different
classes of enterprise components. The seamless integration with existing SOA
components is based on the Service Component Architecture (SCA).

The underlying manager framework has also been used in a different con-
text: we designed an autonomic management framework for virtual machines
[24], which is going to be integrated with the work presented in this paper.
We are also working on basing our inter-manager SLA communication on WS-
Agreement (see [25]). In addition, future work concentrates on exploiting the
potential for system-wide optimisations, which are made possible by the homo-
geneous view on all applications of an enterprise that is provided by a SOA. We
currently work on enhancing the existing architecture with self-organisation as-
pects for service managers. We aim to minimise global service resource usage by
establishing a P2P-based trading mechanism for iSLO parts. A first approach
that uses auction and bazaar protocols for transferring iSLO shares between
participating components of a workflow has already been described in [26].

References

1. Organization for the Advancement of Structured Information Standards (OASIS):
Web Services Business Process Execution Language Version 2.0 - OASIS Standard
(April 2007) (Last visited 10/12/2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

2. Rud, D., Schmietendorf, A., Dumke, R.: Performance Modeling of WS-BPEL-
Based Web Service Compositions. In: IEEE Services Computing Workshop (2006)

3. Open SOA Collaboration: SCA Service Component Architecture – Assembly Model
Specification Version 1.0 (March 2007) (Last visited 10/12/2007), http://www.

osoa.org/display/Main/Service+Component+Architecture+Specifications

4. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1),
41–50 (2003)

5. Herrmann, K., Muehl, G., Geihs, K.: Self-Management: The Solution to Complexity
or Just Another Problem?. IEEE Distributed Systems Online 6(1) (2005)

6. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems Manage-
ment 11(1), 57–81 (2003)

7. Schaefer, J.: An Approach for Fine-Grained Web Service Performance Monitor-
ing. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, Springer,
Heidelberg (2006)

8. IBM: IBM Systems Software Information Center: Application instrumenta-
tion (Last visited August 2007), http://publib.boulder.ibm.com/infocenter/
eserver/v1r2/index.jsp?topic=/ewlminfo/eicaaappinstrument.htm

9. Schmid, M., Thoss, M., Termin, T., Kroeger, R.: A Generic Application-
Oriented Performance Instrumentation for Multi-Tier Environments. In: IM 2007
- IFIP/IEEE Int. Symp. on Integrated Network Management, IEEE, Los Alamitos
(2007)

10. OASIS: Web Services Distributed Management: Management of Web Services 1.0
(2005), http://docs.oasisopen.org/wsdm/2004/12/wsdm-mows-1.0.pdf

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp?topic=/ewlminfo/eicaaappinstrument.htm
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp?topic=/ewlminfo/eicaaappinstrument.htm
http://docs.oasisopen.org/wsdm/2004/12/wsdm-mows-1.0.pdf

Decentralised QoS-Management in Service Oriented Architectures 57

11. Distributed Management Task Force, Inc.: Common Information Model Specifica-
tion 2.2 (1999), http://www.dmtf.org/standards/documents/CIM/DSP0004.pdf

12. Sun Microsystems: Java Management Extensions Instrumentation and Agent Spec-
ification, V1.2 (2002),
http://jcp.org/aboutJava/community-process/final/jsr003/index3.html

13. The OpenGroup: Application Response Measurement (ARM) Issue 4.0, V2 - C
Binding (2004), http://www.opengroup.org/management/arm/

14. Debusmann, M., Schmid, M., Kroeger, R.: Model-Driven Self-Management of
Legacy Applications. In: Kutvonen, L., Alonistioti, N. (eds.) DAIS 2005. LNCS,
vol. 3543, pp. 56–67. Springer, Heidelberg (2005)

15. Menasce, D.A., Barbara, D., Dodge, R.: Preserving QoS of e-commerce sites
through self-tuning: A performance model approach. In: Proceedings of the 3rd
ACM Conference on Electronic Commerce, pp. 224–234. ACM Press, New York
(2001)

16. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic provisioning of multi-
tier internet applications. In: Proceedings of the 2nd International Conference on
Autonomic Computing (ICAC 2005) (June 2005)

17. Ranjan, S., Rolia, J., Fu, H., Knightly, E.: QoS-driven server migration for internet
data centers. In: Proceedings of the 10th International Workshop on Quality of
Service (IWQoS 2002), May 2002, pp. 3–12 (2002)

18. Diao, Y., Eskesen, F., Froehlich, S., Hellerstein, J.L., Spainhower, L.F., Surendra,
M.: Generic Online Optimization of Multiple configuration Parameters With Ap-
plication to a Database Server. In: Brunner, M., Keller, A. (eds.) DSOM 2003.
LNCS, vol. 2867, Springer, Heidelberg (2003)

19. Diao, Y., Gandhi, N., Hellerstein, J.L., Parekh, S., Tilbury, D.M.: Using MIMO
Feedback Control to Enforce Policies for Interrelated Metrics With Application to
the Apache Web Server. In: Proceedings of Network Operations and Management
2002 (NOMS), pp. 219–234 (2002)

20. Ludwig, H.: Web services QoS: external SLAs and internal policies or: how do we
deliver what we promise?. In: Proceedings of Fourth International Conference on
Web Information Systems Engineering Workshops, 2003 (2003)

21. Mayerl, C., Vogel, T., Abeck, S.: SOA-based integration of IT service manage-
ment applications. In: Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE
International Conference on (2005)

22. Moura, A., Sauv, J., Jornada, J., Radziuk, E.: A Quantitative Approach to IT
Investment Allocation to Improve Business Results. In: Seventh IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks (POLICY 2006)
(2006)

23. Berbner, R., Grollius, T., Repp, N., Heckmann, O., Ortner, E., Steinmetz, R.: An
approach for the Management of Service-oriented Architecture (SoA) based Appli-
cation Systems. In: Enterprise Modelling and Information Systems Architectures,
Proceedings, 2005, October 2005, pp. 208–221 (2005)

24. Marinescu, D., Kroeger, R.: Towards a Framework for the Autonomic Management
of Virtualization-Based Environments. In: Erstes GI/ITG KuVS Fachgespraech
Virtualisierung, Paderborn (February 2008)

25. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne,
J., Rofrano, J., Tuecke, S., Xu., M.: Web Services Agreement Specification (WS-
Agreement). Open Grid Forum GWD-R (Proposed Recommendation) (2007)

26. Schmid, M.: Ein Ansatz fuer das Service Level Management in dynamischen Ar-
chitekturen. In: Braun, T., Carle, G., Stiller, B. (eds.) KiVS 2007 - Kommunikation
in Verteilten Systemen, March 2007, pp. 255–266. VDE Verlag (2007) (in German)

http://www.dmtf.org/standards/documents/CIM/DSP0004.pdf
http://jcp.org/aboutJava/community-process/final/jsr003/index3.html
http://www.opengroup.org/management/arm/

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 58–71, 2008.
© IFIP International Federation for Information Processing 2008

QoS-Based Service Provision Schemes and Plan
Durability in Service Composition

Koramit Pichanaharee and Twittie Senivongse

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University
Phyathai Road, Pathumwan, Bangkok 10330 Thailand

koramit.p@gmail.com, twittie.s@chula.ac.th

Abstract. In service composition, quality of service is a major criterion for se-
lecting services to collaborate in a process flow to satisfy a certain quality goal.
This paper presents an approach for service composition which considers QoS-
based service provision schemes and variability of the QoS when planning. The
QoS of a service can be stated in terms of complex service provision schemes,
e.g. its service cost is offered at different rates for different classes of process-
ing time, or its partnership with another service gives a special class of QoS
when they operate in the same plan. We also address that it is desirable for ser-
vice planning to result in a plan that is durable and reusable since change in the
plan, e.g. by deviation of the actual QoS, would incur overheads. Our planning
approach takes into account these dynamic situations and is demonstrated by
using the Estimation of Distribution Algorithm.

Keywords: Service Composition, QoS, Estimation of Distribution Algorithm.

1 Introduction

Service composition is a process that selects software units, called services, and com-
poses them into a workflow that represents a business process [1]. The workflow can
be viewed as a composite service since it provides an aggregated function and can be
used further in composition of other services or business processes. A service compo-
sition problem can be considered a planning problem. That is, given a flow of abstract
services (AS) for a particular business domain as a goal, composition will create a
plan that satisfies such a goal by assigning a service instance (SI) in place of each
abstract service. A flow for a travel planner, for example, may consist of three ab-
stract services, i.e. tourist information, transportation, and accommodation services. A
service instance will be selected for each abstract service to make a concrete plan.

Quality of service (QoS) has been considered widely in the composition problem.
Service instances that collectively give the optimal quality or meet the quality defined
by the user will be the solution to planning. Several publications [2-5] give slightly
different QoS definitions but the most common QoS attributes include cost, time,
availability, reliability, reputation, and security of services. A number of research
efforts have proposed ways to compose services based on QoS attributes by using

 QoS-Based Service Provision Schemes and Plan Durability in Service Composition 59

several optimisation methods and techniques, e.g. integer programming, linear pro-
gramming, genetic algorithm. We are interested in using QoS attributes to determine
the solution plan, but also discuss the following issues:

1. The QoS of service instances may vary when the instances are used in different
operational environments, and therefore different users may have different ex-
periences when using the same service instance. To have an accurate view of
the actual QoS, each user will maintain his/her own experiences in using par-
ticular service instances, i.e. how much the actual QoS deviates from what was
published by service providers. Such information should be fed into future
planning which involves those service instances.

2. In certain cases, an organisation that formulates a composition plan to represent
a business process would expect the plan to last and can be reused at least for
some time. A travel planning organisation, for example, would use the plan
which consists of particular instances of tourist information, transportation, and
accommodation services to arrange trips for its customers. If the actual QoS of
these instances is quite stable compared to what was published at planning
time, the organisation can reuse the plan in serving its customers. Deviation of
the QoS of each service instance can affect the overall QoS of the flow and
hence will call for a new plan to be composed. Such replanning incurs over-
heads and is not desirable if it happens frequently. We address this issue as
plan durability.

3. Instead of publishing service quality in terms of individual QoS attributes, ser-
vice providers can state the QoS in terms of complex service provision
schemes to realise various classes of service provision. For example, a service
instance may offer different classes of service time which vary by the cost
charged to the user, or the availability of the service instance may vary by the
time of use. A service provider may also work in partnership with another pro-
vider to provide a special class of service, e.g. they give a discount in cost or
offer less service time if their instances operate together in a plan. Partnership
nevertheless can affect plan durability. When two service instances are cou-
pled, a QoS deviation at one instance could affect its partner and lead to change
at both instances; the plan becomes less durable as a single deviation may incur
change to a large extent of the plan.

In this paper, we propose an extended QoS model and a planning approach that
will result in composition plans that address the three situations above. QoS-based
service provision schemes will be taken into account when service instances are se-
lected for the plans. Our QoS model captures common quality attributes, i.e. cost,
time, reliability, and availability, and enhances with durability quality via self-rating
and partnership-coupling metrics. Self-rating refers to the rating an individual user
gives to a particular service instance based on his/her own experience in its QoS.
Partnership coupling refers to the degree of coupling between service instances which
is present in the plan via partnership schemes. We see that considering the durability
issue at planning time will result in a plan that lasts longer and thus help reduce the
chance of frequent replanning. We use the Estimation of Distribution Algorithm (EDA)
[6], which is a technique of the Genetic Algorithm (GA) [7], as the planning algorithm.
To search for a planning solution, the EDA generates population by a probabilistic

60 K. Pichanaharee and T. Senivongse

model which is derived from the knowledge obtained from the past generations of popu-
lation. We are interested in this characteristic of the EDA because such knowledge
should facilitate the creation of a new population during a solution search process, and
should additionally contribute to replanning when a new plan is needed. A simulation of
service instances QoS and EDA-based planning will be conducted.

Our approach can be used for both offline and runtime planning. A concrete plan is
composed with regard to a given abstract flow, service provision schemes, and the
durability issue. The plan should last until there is a requirement for a new plan, e.g.
when there are new service instances or new updates on the QoS of existing instances.
If runtime monitoring of the flow is supported, planning can also be triggered when
there are service outages or serious deviations of the QOS. This work assumes that all
service instances that are bound to a plan are compatible in terms of interface signa-
tures and semantics. Service providers will publish the QoS of service instances in a
public registry, e.g. UDDI for Web services, or provide other means for users to have
access to QoS attributes.

The paper is organised as follows. Section 2 presents related work and Section 3
discusses our approach to QoS-based service provision schemes and variability of the
QoS. We present the extended QoS model in Section 4 and describe how EDA is used
in planning in Section 5. Simulation results from running the EDA are shown in Sec-
tion 6 and the paper concludes with a discussion and future work in Section 7.

2 Related Work

Research works in QoS-based service planning tackle this problem by using different
optimisation techniques to find composition plans based on slightly different QoS
models. One of the major efforts in this area is the work in [2] which proposes a QoS
model that captures execution price, execution duration, reputation, successful execu-
tion rate, and availability. By using integer programming, its QoS-aware composition
maximises the QoS of composite services while taking into account the constraints of
the users. Its supporting execution environment also considers runtime changes in the
QoS of the service instances. The QoS model in [8] is used as a fitness function for
composing a plan by GA. The QoS attributes include time, cost, reliability, and avail-
ability, and the plan will be penalised if it violates user QoS constraints. In [9], time,
cost, and reliability are of concern in the QoS model and a distance function-based
multi-objective evolutionary algorithm is used to find an optimised composition. A
QoS reference vector is proposed in [10] to model price, time, reliability, trust (i.e.
subjective rating), and security. The work evaluates service quality against cost of
service selection by comparing a global exhaustive search and the integer program-
ming approach. The work in [11] introduces a model-driven methodology for building
QoS-optimised composite services and uses UML profile for QoS to model QoS re-
quirements. The overall QoS of a plan is determined based on the multiple criteria
decision making approach and patterns of control flow. Price, execution time, user
rating, and encryption level are the QoS attributes of concern.
 The paper [12] proposes a broker that supports planning and execution of any
composite services with multiple QoS classes. Since a particular plan can be reused
and executed repetitively as a flow, the QoS can be guaranteed on a per-flow rather

 QoS-Based Service Provision Schemes and Plan Durability in Service Composition 61

than a per-request basis, and different QoS levels can be negotiated with respect to the
volume of execution requests. Time, cost, and availability are included in the QoS
model, and linear programming is used as the planning algorithm. The work in [13]
presents a semantics-based planning approach in which data semantics, functional
semantics, QoS (i.e. time, cost, reliability, availability, domain-specific QoS metrics),
and constraints of service instances are considered. Ontology-based service depend-
encies such as business/technological constraints and partnership between services are
addressed, and integer linear programming is used as the planning algorithm.

Regarding the works above, we see that EDA is only an alternative planning algo-
rithm with a means to utilise prior knowledge when finding a solution plan and thus
we do not aim to compare its performance with the algorithms in other approaches.
Nevertheless, we share with them the common QoS attributes, but the reputation
attribute is captured by a self-rating metric which is derived from a user’s own ex-
periences in the delivered QoS rather than from other users’ subjective opinions.
None of the related works address QoS-based service provision schemes and plan
durability at planning time.

3 QoS-Based Service Provision Schemes and QoS Variability

In this section, we present our view on QoS-based service provision schemes and
variability of the QoS towards plan durability. The following contribute to the ex-
tended QoS model and EDA-based planning in Sections 4 and 5.

3.1 QoS-Based Service Provision Schemes

Service providers can state the QoS in terms of complex service provision schemes to
realise various classes of service provision. We give three examples here:

Multi-level QoS. A particular QoS attribute value may be published at different
rates. Table 1 shows an example of multi-level availability of a service instance based
on time of day. Multi-level QoS can be modelled in other ways, e.g. availability rates
by classes of users, or by both time and classes of users. The scheme relating to cost,
time, and reliability can be formulated in a similar manner.

Table 1. Example of multi-level availability

Service Instance A
Time of Day Availability
06:01 – 18:00 Base availability
18:01 – 00:00 +3 %
00:01 – 06:00 +5 %

Multi-level QoS affects service instance selection for abstract services. With the
scheme in Table 1, a single service instance A effectively ‘spawned’ into three logical
service instances; each of them is in service during particular time of day and with a
particular availability rate. The planning algorithm considers them as three candidates
for the abstract service.

62 K. Pichanaharee and T. Senivongse

QoS Interdependency. This service provision scheme forms a relation between
different kinds of QoS attributes of a particular service instance. In Table 2, a service
instance offers different classes of processing time based on service cost charged to
the user. This QoS interdependency can be modelled in other ways, e.g. offering
classes of discount for different levels of increased processing time. The scheme
relating to availability and reliability can be formulated in a similar manner.

Table 2. Example of cost-processing time dependency

Service Instance A
Cost Processing Time
Base cost Base processing time
+3% -5%
+5% -8%

Similarly to multi-level QoS, QoS interdependency affects the number of service
instances that is associated with an abstract service. With the scheme in Table 2, a
single service instance A is viewed as three logical instances; each of them offers
service at the designated cost and processing time.

Partnership. Partnership refers to an agreement between service instances to offer a
special class of service to attract users. The partnered instances may belong to the
same service provider or different providers. A partnership scheme thus models de-
pendencies between QoS attributes of the partnered instances. Table 3 shows a part-
nership scheme between service providers A, B, and C. The scheme offers a 10%
discount in cost when the following instances of A, B, and C altogether participate in
a particular plan: (1) any instance offered by A (2) any instance of abstract service X
offered by B and (3) instance x1 of abstract service X or instance y1 of abstract ser-
vice Y offered by C.
 Partnership nevertheless can affect plan durability. When any two service in-
stances are partners, it is likely that a QoS deviation in one instance could affect its
partner. For example, when the instance y1 fails or has a QoS deviation and is re-
placed by another instance of a service provider D, the discount in Table 3 will no
longer apply. The planning algorithm may choose to replace also the instances of A
and B in order to benefit from the partnership scheme that D has with other service
providers. In this view, partnership leads to coupling between service instances and
the plan becomes less durable as a single deviation may incur change to a larger ex-
tent of the plan.

Table 3. Example of partnership

10% discount in cost when these instances collaborate
Service Provider Constraint on Instances
A Any instance
B Any instance of abstract service X
C Instance x1 of abstract service X, or instance y1 of abstract service Y

 QoS-Based Service Provision Schemes and Plan Durability in Service Composition 63

3.2 QoS Variability

The QoS of a service instance may be affected not only by communication networks but
also by the service instance itself. Since each service instance is built and tested inde-
pendently in certain environment, the QoS behaviour may vary when it is used in differ-
ent operational environment. Therefore different users may have different experiences
in using the same service instance. We address QoS variability through user self-rating,
which is given to service instances, and a supporting planning architecture.

Self-rating. Instead of using users’ subjective opinions to determine the confidence in
the overall quality of service provision, we aim for a self-rating approach which is
more objective and respects users’ personal experiences in service usage. Self-rating
follows the idea of [14] such that service rating is based on deviation of the delivered
QoS from the published QoS; the rating score is increased if the QoS fluctuates in a
good way, and decreased otherwise. However, the score by [14] is computed at the
service side and based on users’ invocations from different network environments.
The score is therefore biased from a particular user’s viewpoint. We propose a self-
rating metric (P) which reflects QoS fluctuations of a service instance experienced by
a particular user:

()
s

N
Rating P

E
= (1)

where N is the reward score given when the delivered QoS deviates in a good way,
and E is the penalty score given otherwise. Rating runs between (0, 1], and when it
reaches 1, it stops responding to any more rewards. For an initial rating given to any
service instance that is first known to the user, we adopt the mid-value 0.5 rather than
an external rating score (e.g. published rating or other users’ rating). This is because
we prefer the user to truly rate service behaviour from personal experiences and not to
be biased by the score determined under different operational settings. This initial
score, in other words, is a representation of an initial N (e.g. 10) divided by an initial
E (e.g. 20). When a user invokes any service instance, delivered QoS will be meas-
ured in order to update rating according to the user’s own rating rules. We allow for
personal rating rules since different users may be sensitive to QoS deviation in differ-
ent manners and may opt for different reward-penalty schemes. Table 4 shows rating
rules for time and availability defined by a user. The time rating rules are based on the
distance of the delivered QoS from the published QoS under an acceptable fluctuation
range (± f). The availability rating rules penalise the service instance if it is not acces-
sible at the time the invocation is made and retried. Given a scenario that a service
instance is known to a user for the first time, the user sees the rating score 0.5 (i.e.
10/20). Suppose when the user invokes the service instance, it does not respond at
first but a retry succeeds, and the delivered time of this invocation falls under the third
rule of time rating rules. Hence the score of the service instance in this scenario will
be (10+1)/(20+1) = 11/21 = 0.524. The values N = 11 and E = 21 become the new
base values for this service instance for the next rating computation. While the user
experiences the quality of the service instance through repeated invocations, the rating
score is refined and becomes more accurate.

64 K. Pichanaharee and T. Senivongse

Table 4. Example of personal rating rules for time and availability

Time Availability
Event Action Event Action
• Tsdelivered > Tspublished + f +1 to E • Not available first time +1 to E
• Tspublished + f ≤ Tsdelivered ≤

Tspublished – f
+0.25 to N • Not available next time +2 to E

• Tsdelivered < Tspublished – f +1 to N

This QoS-based self-rating contributes to plan durability. If all service instances in
a plan are quite stable or do not fluctuate much in a bad way (i.e. good rating), the
plan becomes durable and can be reused. On the contrary, if any service instance
behaves much badly (i.e. low rating), the QoS of the whole plan may be affected and
replanning becomes necessary.

Planning Architecture. To support QoS-based service provision schemes and QoS
variability, we assume each user has a planning architecture as in Fig. 1.

User

Service
Instance

Service
Provider or

Public Registry

Invocation

Delivered QoS
Published QoSQoS Data

QoS Request

Business Process
Execution Platform

QoS Monitor

Planner

Service Provision
Schemes

Rating Computation

Rating Rules

QoS Information
<SI, Cost, Processing Time , Transmission Time ,
Availability , Reliability , Rating>

QoS Registry

Fig. 1. Client-side planning architecture

The QoS registry stores QoS information of all service instances which are relevant
to his/her business domain; discovery of these instances can be performed manually
or automatically prior to composition. Cost, time, availability, and reliability informa-
tion is retrieved from a public service registry or directly from service providers, and
can be refreshed periodically or before planning. In contrast, rating information is
initialised to 0.5 and gets updated only by rating rules. Note that each of the logical
instances (e.g. each of the three logical instances of A according to Table 1) has its
QoS information stored separately but they all share the same rating score. With the
QoS information, plans are created by the planner and executed on the business proc-
ess execution platform. During execution, delivered QoS is monitored by the QoS
monitor and fed to the QoS registry where rating is then computed for service in-
stances. Such knowledge of the QoS and personal experiences regarding particular
service instances can help the planner to replan existing abstract flows for the user
when necessary and to compose plans for new abstract flows that involve those ser-
vice instances.

 QoS-Based Service Provision Schemes and Plan Durability in Service Composition 65

4 Extended QoS Model

Our QoS model comprises five quality attributes: time (i.e. processing time + trans-
mission time), cost, availability, reliability, and rating. The definitions of the first four
can be found in [2] while rating refers to the proposed self-rating in Section 3.2.
Since a composition can be viewed as an aggregation of control flow constructs, the
overall QoS of the flow is based on the QoS concerning each construct. We adopt a
set of QoS metrics for common control flow constructs (i.e. sequence, switch, fork,
and loop) of [8] and extend it with self-rating metrics (shown in boldface type) as in
Table 5.

Table 5. Metrics for control flow construct-QoS pairs

QoS Sequence Switch Fork Loop

Time (T) ∑
=

m

i
itT

1

)(∑
=

n

i
iai tTp

1

)(* })({ }...1{ piitTMax ∈
)(* tTk

Cost (C) ∑
=

m

i
itC

1

)(∑
=

n

i
iai tCp

1

)(* ∑
=

p

i
itC

1

)()(* tCk

Availability (A) ∏
=

m

i
itA

1

)(∑
=

n

i
iai tAp

1

)(* ∏
=

p

i
itA

1

)(ktA)(

Reliability (R) ∏
=

m

i
itR

1

)(∑
=

n

i
iai tRp

1

)(* ∏
=

p

i
itR

1

)(ktR)(

Rating (P) ∏
=1

()
m

i
i

P t ∑
=1

* ()
n

ai i
i

p P t ∏
=1

()
p

i
i

P t ()kP t

The metrics are recursively defined on compound nodes of the flow. For a Se-
quence construct of tasks {t1,…, tm}, the time and cost metrics are additive, while
availability, reliability, and rating are multiplicative. Each of the Cases 1,…, n of the
Switch construct is annotated with the probability to be chosen (pai); probabilities are
initialised by the user and can be updated later considering the information obtained
by monitoring flow execution. The functions for the Fork construct are essentially the
same as those for the Sequence construct, except for the time attribute where this is
the maximum time of the parallel tasks {t1,…, tp}. Finally, the Loop construct with k
iterations of task t is equivalent to the Sequence construct of k copies of t.

5 Planning Algorithm

Planning a composite service is a constraint optimisation problem that needs to

1. Meet user QoS constraints. For example, an abstract service must not have ser-
vice cost above a given limit, or the overall cost of the plan is constrained. The
former is called a local constraint and the latter a global constraint.

2. Optimise a function of some QoS attributes. For example, the user may want to
minimise service time while keeping cost below the limit.

This section describes how EDA is applied to find QoS-optimised solution plans.

66 K. Pichanaharee and T. Senivongse

5.1 Planning with EDA

Like other evolutionary computation techniques, EDA follows the process in Fig. 2(a)
to find a solution to an optimisation problem.

(a) (b)

Fig. 2. EDA (a) Evolutionary computation process (b) Chromosome encoding (similar to en-
coding in GA [8])

The algorithm starts with a generation of a fixed-size initial population, which con-
sists of a number of randomised encoded solutions called chromosomes. The initial
population is allowed to evolve under specified selection rules to a state that satisfies
user constraints and optimises a particular fitness function. Each chromosome will be
evaluated against the constraints and its fitness is computed. If any chromosome satis-
fies the constraints, the algorithm may stop and the chromosome becomes the solu-
tion. Otherwise the algorithm continues to find a more optimised solution until a
certain number of generations have been processed. To generate a new generation of
population, some best-fitted chromosomes from the previous generation are selected
for the new generation, and additional chromosomes are generated until the popula-
tion size is reached. Then the algorithm repeats.

An EDA chromosome is encoded in a bit string of a fixed length. Sub-bit strings
represent service instances (SI) that are mapped to abstract services (AS). In Fig. 2(b),
AS1 has three SIs and therefore is encoded with two bits, whereas AS2 has five SIs and
is encoded with three bits. Suppose SI12 is selected for AS1, its sub-bit string is 10, and
if SI25 is selected for AS2, its sub-bit string is 101. A chromosome is then a sequence
of sub-bit strings representing all selected service instances for the abstract flow.

Each chromosome g in a generation has its fitness computed by using the follow-
ing fitness function (to be minimised); the function is similar to the one proposed in
[8] except for Rating(g) and Dp(g) components (shown in boldface type) that we
augment to represent self-rating and partnership coupling respectively:

 QoS-Based Service Provision Schemes and Plan Durability in Service Composition 67

1 2

6

3 4

() ()
() ()

() ()

w Cost g w Time g
F g w D g

w Availability g w Reliability g

+= + +
+ + 7

5

p
w D (g)

w Rating(g)
 (2)

• Cost(g), Time(g), Availability(g), Reliability(g), and Rating(g) are the QoS val-
ues computed for the chromosome g using the metrics in Table 5.

• D(g) is the distance of the chromosome g from constraints satisfaction, i.e. F(g)
penalises the chromosome that does not meet the user’s constraints and drives
the evolution towards constraints satisfaction. It is defined by

∑
=

=
n

i
ii ygclgD

1

*)()(

where cli(g), i = 1,…, n, is g’s distance from ith constraint, and

0 when () 0 (positive or nodistance)

1 when () 0 (negativedistance)
i i

i i

y cl g

y cl g

= ≤⎧
⎨ = >⎩

• Dp(g) is the degree of partnership coupling, i.e. F(g) penalises the chromosome
in which associated service instances are part of partnership schemes. It is de-
fined by

n

S
gD p

p =)(

where Sp is the number of service instances involved in partnership schemes,
and n is the total number of service instances in g.

• wi indicates the weight (i.e. importance) the user gives to each component of
F(g).

When a satisfactory solution is not yet found, there are several strategies for EDA to

generate a new generation of population. We use the one called Probabilistic Building
Increasing Learning (PBIL) to generate chromosomes for the new generation by using
Generator Function (GF). A GF contains probabilities pi, i.e. {p1, …, pn}, where pi is the
probability that the ith bit of an n-bit chromosome is 0. For a given population with m
chromosomes, pi is the proportion of the number of 0 bits found in the ith bit position to
the total number of bits in the ith bit position (i.e. m). For example, given a population
with four chromosomes {010, 100, 111, 101}, the GF contains p1 = 0.25, p2 = 0.5, and
p3 = 0.5. To generate a new generation of population, each new chromosome in the new
population would have 0 (zero) assigned to its 1st, 2nd, and 3rd bit with the probabilities
0.25, 0.5, and 0.5 respectively. In this manner, GF reflects knowledge from the past
which guides how to generate good chromosomes. This knowledge would be refined as
the population evolves from one generation to the next.

5.2 Durable Planning

In the fitness function above, rating and partnership coupling components contribute
to durability of the generated plan. Since rating concerns QoS fluctuation while part-
nership coupling signifies a potential that a single service change may affect the plan
to a larger extent, putting weights on them will indicate to EDA to find an optimised

68 K. Pichanaharee and T. Senivongse

plan with good rating and low partnership coupling. That is, when it is less likely for
the plan to require change, the plan is durable and can be reused.

At execution time, service instances, and hence the business process flow, may suf-
fer from performance degradation and cannot deliver service quality as planned. The
flow should be prepared to survive in unstable operational environment by consider-
ing performance deviation at planning time. We can simulate the situation by inject-
ing QoS deviation to service instances and letting the EDA process makes a plan out
of those instances (see Section 6.2).

6 Experimental Studies

We conducted a couple of simulations to study the behaviour of EDA-based planning
with respect to QoS-based service provision schemes and plan durability. Note that
service provision schemes took part in the experiments by constraining the QoS of
candidate service instances. The first study focused on the use of GF from previous
planning in building a new composition plan when published QoS of service instances
was updated. The second study focused on durable planning. In each study, the popu-
lation size was 200, the maximum number of generations to run EDA is 50, and the
experiment was repeated for 50 times to obtain average results. The simulation pro-
gram was written in Java with J2SDK 1.6. Experiments were run on a 1.8 GHz Intel
PentiumTM, 1 GB of RAM, and Ubuntu Linux version 7.04.

6.1 Use of GF

This study focused on the use of GF from previous planning in building a new com-
position plan when the published QoS of service instances was updated by service
providers. This will demonstrate how GF benefits a search for a new solution plan.
Suppose a user constraint was that the fitness value of the plan had to be below 9,600.
The QoS of service instances was updated 4 times after the instances were first pub-
lished. To simulate each update, we degraded all QoS values of the instances 0-5% at
random. For example, if a service instance, with 1,500-millisecond service time, was
randomised to degrade 1%, its service time would be updated to 1,515 milliseconds.
At each update, EDA generated a new plan. There were 10 abstract services and each
of them had 111 candidate service instances.

Fig. 3. Composition with GF

 QoS-Based Service Provision Schemes and Plan Durability in Service Composition 69

We compare between a composition that does not use GF from previous planning
(i.e. it uses GF in current planning only) and the one that does. In Fig. 3, the left graph
shows that, when GF from previous planning involves in the creation of chromosomes
in the new planning after a QoS update, convergence time decreases. This means it
takes less time (i.e. less number of generations) to find an optimised solution plan.
This is because GF from previous planning is the knowledge that guides the charac-
teristics of good solutions. It can be seen that, for example, the 1st – 50th generations
of the planning on the 1st QoS update are effectively the 51st – 100th generations of the
initial 0th planning. The right graph shows that, under a user constraint on the fitness
value of the plan (i.e. below 9,600), composition that uses GF from previous planning
gives better solutions. As GF is passed along, each composition gives a more opti-
mised solution plan.

6.2 Plan Durability

Usually service QoS that is published by service providers is considered during plan-
ning. We expect that early (i.e. planning-time) consideration about the possibility of
QoS deviation from what was published should result in solution plans that are more
durable at execution time. This study focused on composition of plans that can sur-
vive unstable execution environment. Given a flow of 20 abstract services and a user
constraint such that the fitness value of the plan had to be under 9,600, two groups of
100 plans were generated. For the first group, published QoS was considered during
planning; this represented composition with ideal service instances with no QoS de-
viation. The second group comprised the concrete plans from the first group but with
degraded QoS; this represented composition with an expectation of service QoS de-
viation. The service instances of each plan within the second group had all their QoS
values degraded by 1-5% randomly.
 After two groups of 100 concrete plans were obtained, we simulated their execu-
tion under unstable environment. Each service instance in any of these plans was
randomised with a 40% chance to have its QoS degraded at run time. For the service
instance that was to degrade, its QoS was degraded by 1-10% randomly. Then the
fitness values of the plans in these two groups were computed to determine a percent-
age of survival, i.e. how many of the plans in each group still met the user constraint
(with an acceptable 5% deviation) in unstable runtime environment.

Fig. 4. Effects of plan durability

70 K. Pichanaharee and T. Senivongse

We experimented with various number of service instances per abstract service;
this reflected the variation in size of solution search space. In Fig. 4, the left graph
shows that the plans in the second group (i.e. those created with consideration about
QoS deviation) can survive runtime degradation better than those in the first group
(i.e. those created with no QoS deviation). This observation is true regardless of the
size of solution search space. Nevertheless, the right graph indicates that it takes
longer time (i.e. more number of generations) for EDA to find an optimised plan
when the possibility of QoS deviation is considered during planning.

7 Discussion and Conclusion

In this paper, we discuss various schemes of QoS-based service provision and address
a plan durability issue concerning QoS deviation and service relations. Self-rating and
partnership coupling are introduced as part of the extended QoS model for service
instances and workflows. A client-side planning architecture is also proposed. Using
EDA as the planning algorithm, our experiments show that GF can benefit planning
since knowledge of good solutions is utilised in finding a QoS-optimised plan. Con-
sidering the possibility of QoS deviation early at planning time will also result in
more durable plans which can survive performance degradation at execution time.

On plan durability, our approach does not aim to make very durable plans so as to
replace runtime replanning. Replanning capability is necessary when new services are
offered or there are service outages or severe QoS degradation during flow execution.
In commercial scenarios today, it is common practice that service providers publish
their service instances QoS with a possible reduced QoS rate as a safety buffer. This
safety buffer is taken into consideration at run time to determine QoS violation. Our
work is aligned with this compromised QoS approach but takes the QoS safety buffer
into consideration at planning time. By planning with degraded service instances in
mind, we obtain the solutions that are more durable at run time. Our approach thus
reduces the chance that a solution will need runtime replanning. It is also worth noting
that our approach assumes the published QoS information is accurate. If service pro-
viders understate their service QoS only to boost their ratings, they put their service
instances at the risk of not being selected to the plans from the beginning.

On performance of EDA, we rely on the performance result of the GA-based algo-
rithm compared to that of the integer programming approach as reported in [8]. GA
takes less time to find a solution and its timing performance is almost constant when
the solution search space grows (i.e. when the number of service instances per ab-
stract service increases). Thus it is preferred for the case of widely used abstract ser-
vices, such as hotel booking and ecommerce services, which have a large number of
candidate service instances. By using EDA, we also observe that the solutions gener-
ated in each generation can be very much similar to those in the previous generation
because of knowledge in GF. That is, GF can lead EDA to fall easily into local op-
tima. We will find a way to detect the situation and adjust GF. Nevertheless, we ex-
pect that knowledge in GF would be useful for runtime replanning, either in making a
whole new plan or replacing specific part of the plan. We will explore more about the
influence of GF over replanning.

 QoS-Based Service Provision Schemes and Plan Durability in Service Composition 71

References

1. Barry, D.K.: Web Services and Service-Oriented Architecture. Morgan Kaufmann, San
Francisco (2003)

2. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
Aware Middleware for Web Services Composition. IEEE Transactions on Software Engi-
neering 30(5), 311–327 (2004)

3. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of Service for Workflows
and Web Service Processes. Journal of Web Semantics 1(3), 281–308 (2004)

4. Menasce, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6), 72–75 (2002)
5. Mani, M., Nagarajan, A.: Understanding Quality of Service for Web Services, http://

www-128.ibm.com/developerworks/library/ws-quality.html
6. Goldberg, D.E.: The Design of Innovation Lessons from and for Competent Genetic Algo-

rithms. Kluwer Academic Publishers, Dordrecht (2002)
7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addi-

son-Wesley, Reading (1989)
8. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An Approach for QoS-Aware Ser-

vice Composition Based on Genetic Algorithms. In: Proceedings of Genetic and Evolu-
tionary Computation Conference (GECCO 2005), Washington DC, USA, June 2005, pp.
1069–1075 (2005)

9. Chang, W.C., Wu, C.H., Chang, C.: Optimizing Dynamic Web Service Component Com-
position by Using Evolutionary Algorithms. In: Proceedings of 2005 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence September 2005, pp. 708–711 (2005)

10. Wu, B.Y., Chi, C.H., Xu, S.: Service Selection Model Based on QoS Reference Vector. In:
Proceedings of 2007 IEEE Congress on Services (SERVICES 2007), Salt Lake City, Utah,
July 2007, pp. 270–277 (2007)

11. Grønmo, R., Jaeger, M.C.: Model-Driven Methodology for Building QoS-Optimised Web
Service Compositions. In: Kutvonen, L., Alonistioti, N. (eds.) DAIS 2005. LNCS,
vol. 3543, Springer, Heidelberg (2005)

12. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Flow-Based Service Selection for
Web Service Composition Supporting Multiple QoS Classes. In: Proceedings of 2007
IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, Utah, July
2007, pp. 743–750 (2007)

13. Aggarwal, R., Verma, K., Miller, J., Milner, W.: Constraint-Driven Web Service Composi-
tion in METEOR-S. In: Proceedings of IEEE International Conference on Services Com-
puting (SCC 2004), Shanghai, China, September 2004, pp. 23–30 (2004)

14. Mourad, O., Athman, B.: Efficient Access to Web Services. IEEE Internet Computing,
34–44, March-April (2004)

Towards Middleware for Fault-Tolerance in

Distributed Real-Time and Embedded Systems

Jaiganesh Balasubramanian1, Aniruddha Gokhale1, Douglas C. Schmidt1,
and Nanbor Wang2

1 Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN 37203, USA

2 Tech-X Corporation, Boulder, CO, USA

Abstract. Distributed real-time and embedded (DRE) systems often
require support for multiple simultaneous quality of service (QoS) prop-
erties, such as real-timeliness and fault tolerance, that operate within
resource constrained environments. These resource constraints motivate
the need for a lightweight middleware infrastructure, while the need for
simultaneous QoS properties require the middleware to provide fault
tolerance capabilities that respect time-critical needs of DRE systems.
Conventional middleware solutions, such as Fault-tolerant CORBA (FT-
CORBA) and Continuous Availability API for J2EE, have limited utility
for DRE systems because they are heavyweight (e.g., the complexity of
their feature-rich fault tolerance capabilities consumes excessive runtime
resources), yet incomplete (e.g., they lack mechanisms that enable fault
tolerance while maintaining real-time predictability).

This paper provides three contributions to the development and stan-
dardization of lightweight real-time and fault-tolerant middleware for
DRE systems. First, we discuss the challenges in realizing real-time fault-
tolerant solutions for DRE systems using contemporary middleware.
Second, we describe recent progress towards standardizing a CORBA
lightweight fault-tolerance specification for DRE systems. Third, we
present the architecture of FLARe, which is a prototype based on the
OMG real-time fault-tolerant CORBA middleware standardization ef-
forts that is lightweight (e.g., leverages only those server- and client-side
mechanisms required for real-time systems) and predictable (e.g., pro-
vides fault-tolerant mechanisms that respect time-critical performance
needs of DRE systems).

1 Introduction

Emerging trends and challenges. Distributed object computing (DOC) mid-
dleware, such as CORBA and Real-time CORBA (RT-CORBA), is used to
support the development and deployment of many distributed real-time and
embedded (DRE) systems, such as shipboard computing systems and intel-
ligence, surveillance, and reconnaissance systems. Such systems often operate
in resource-constrained environments and consist of soft real-time applications
whose availability and timeliness requirements must be satisfied simultaneously.

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 72–85, 2008.
© IFIP International Federation for Information Processing 2008

Towards Middleware for Fault-Tolerance in DRE Systems 73

For example, target tracking systems should provide timely response for analyz-
ing sensor readings even when hardware and software failures occur.

Prior research on providing quality of service (QoS) using DOC middleware
has addressed the timeliness [20] and availability [16, 19] requirements of DRE
systems. Moreover, several standards have defined interfaces and provide ser-
vices and strategies to enhance the timeliness and fault-tolerance capabilities of
DRE systems. For example, RT-CORBA [14] and Distributed Real-time Java [7]
provide capabilities to ensure predictable end-to-end behavior for remote object
method invocations. Similarly, Fault-Tolerant CORBA (FT-CORBA) [13] and
Continuous Availability API for J2EE [23] provide services and strategies to
enhance the dependability of DRE applications.

Despite promising prior work on providing timeliness and fault-tolerance ca-
pabilities for DRE systems, key problems remain unsolved. Existing approaches
provide solutions that address only one QoS dimension (e.g., timeliness) at a
time. As such, these approaches do not simultaneously satisfy multiple QoS re-
quirements, such as timeliness and availability. For example, fault-tolerance so-
lutions are often not designed to honor timeliness while recovering from failures,
whereas real-time solutions often do not recover from failures while ensuring
predictable end-to-end behavior for remote object method invocations.

Moreover, ad hoc solutions—where availability and timeliness capabilities are
obtained by simply adopting a combination of one or more solutions (e.g.,
FT-CORBA and RT-CORBA) described above—are brittle and hard to main-
tain and upgrade. Likewise, many DRE systems run in dynamic operating en-
vironments where workloads and resource availabilities fluctuate, which affect
availability and timeliness requirements of applications. DRE systems therefore
need middleware that (1) integrates real-time and fault-tolerance by design,
rather than in an ad hoc manner, (2) is lightweight so that it is suitable for
resource-constrained deployments, and (3) is adaptive so that availability and
timeliness properties can be tuned dynamically at runtime to maintain soft real-
time and fault-tolerant performance.

Solutionapproach→LightweightReal-timeFault-tolerantMiddleware.
To address these unresolved challenges with prior work, this paper describes
FLARe (Fault-tolerant Lightweight Adaptive Real-time (FLARe)), which is a
CORBA-based middleware characterized by the following contributions:

• Lightweight middleware architecture, that integrates fault-tolerance and real-
time solutions by design, instead of via an ad hoc combination of the complete
FT-CORBA and RT-CORBA specifications. FLARe supports the provisioning
of fault-tolerance functionality based on application time requirements, e.g., to
make failure recovery faster and more predictable for critical (as opposed to
non-critical) applications.
• Resource-aware adaptive fault-tolerance, where the middleware supports flex-
ible fault-tolerant system configurations (rather than inflexible configuration
prevalent in conventional FT solutions) whose behavior depends on resource
availability and utilization levels. When resource availability fluctuates due to

74 J. Balasubramanian et al.

failures, FLARe allocates the most suitable resources amongst the available re-
sources for critical applications to increase the probability of meeting deadlines
after failure recovery.

FLARe’s design is based on the Object Management Group (OMG)’s stan-
dardization efforts to define a Lightweight Fault-tolerance for Distributed Real-
time Systems (Lw-FT-RT-CORBA) [15] specification for CORBA-based DRE
systems. In addition to summarizing these efforts, this paper focuses on the
novel techniques that FLARe uses to provide fast, predictable, and resource-
aware failure recovery for DRE systems. FLARe is developed atop the TAO
(www.dre.vanderbilt.edu/TAO) RT-CORBA object request broker (ORB).

2 Objectives of the Lw-FT-RT-CORBA Effort

The goal of Lw-FT-RT-CORBA is to provide middleware mechanisms that si-
multaneously support availability and timeliness QoS for DRE systems. This
section first describes the system and fault model of DRE systems that Lw-
FT-RT-CORBA is intended to support. We then describe the key challenges of
simultaneously providing availability and fault-tolerance capabilities for DRE
systems and explain why the FT-CORBA [13] standard is inadequate for DRE
systems. Finally, we summarize how FLARe achieves the objectives of Lw-FT-
RT-CORBA to resolve these challenges effectively.

2.1 System and Fault Model

This paper focuses on request/response-based DRE systems, where clients in-
voke remote operations on servers and where client timeliness and availability
requirements must be satisfied. Many real-time services (e.g., sensor data acqui-
sition and processing) are inherently stateless. For example, in target tracking
systems the coordinate calculator that receives images from an image forwarding
base station and calculates coordinates of surveillance images can be designed to
process each image independently to avoid maintaining state between each in-
vocation. Such systems need to provide real-time performance to clients, even in
the presence of failures and load fluctuations. The goal of Lw-FT-RT-CORBA is
to support soft real-time and fault-tolerant QoS properties for these applications.

Replication style. active and passive replication are two approaches for
building fault-tolerant distributed systems [16]. In active replication, client re-
quests are multicast and executed at all replicas to maintain strong consistency
and provide fast failure recovery. active replication, however, can incur exces-
sive overhead for DRE systems composed of (1) stateless applications, such as the
coordinate calculator systems which do not maintain state from prior sampling
period’s request processing as the processing in the current sampling period is
independent from previous sampling periods, and (2) soft real-time applications
that can tolerate occasional deadline misses. Prior research [4,18] has shown that
passive replication and its variants are more effective for DRE systems because
of its low execution overhead, and hence our focus is on how Lw-FT-RT-CORBA

www.dre.vanderbilt.edu/TAO

Towards Middleware for Fault-Tolerance in DRE Systems 75

can effectively support real-time and fault-tolerant requirements of applications
using passive replication.

System and fault model. The clients and servers (e.g., the image forwarding
base station and coordinate calculator services in the target tracking exam-
ple) are implemented as RT-CORBA objects. The processors and the processes
hosted by the processors are designed using a fail-stop model, where (1) each pro-
cessor or a process halts in response to a failure rather than produce erroneous
results and (2) a processor’s or process’ halted state can be detected by a failure
detector. These types of faults may occur due to aging or acute damage. Con-
sidering unpredictable behavior of processes or processors is beyond the scope
of this paper. We assume that networks provide bounded communication laten-
cies and do not fail. This assumption is reasonable for many DRE systems, such
as avionics mission computing and shipboard computing environments, where
nodes are connected by highly redundant high-speed networks.

2.2 Resource-Aware Fault Recovery Challenges for Lw-RT-FT
CORBA

In the context of the system and fault model described in Section 2.1, the follow-
ing are key unresolved failure recovery challenges for using passive replication
effectively in CORBA-based DRE systems.

• Challenge 1: Providing efficient and predictable system/failure man-
agement. As described in Section 1 and Section 2.1, DRE systems operate in
dynamic operating environments, where new applications are deployed in re-
sponse to changing workloads and failures. This dynamic deployment causes
(1) increased resource utilization in certain processors and (2) load imbalance
amongst the processors in the system. Middleware that is designed to provide
failure recovery and management in a timely manner needs mechanisms that
can react to changing load conditions and failures. Such dynamic environment
changes must be communicated to the fault-tolerant middleware quickly and pre-
dictably so that failure management decisions, such as failover target selection,
can be adapted and updated at runtime.

• Challenge 2: Providing adaptive failover target selection. When a
CORBA application fails due to a processor/process failure, the respective client-
side ORB receives a CORBA comm failure exception [13]. Fault-tolerant ORBs
therefore need to mask clients from those exceptions and transparently redirect
clients to appropriately chosen backups. After a failover, the CPU utilization of
the processors hosting the failover targets increase and the response times of the
clients depend on the utilization levels of those processors.

If the failover targets are chosen statically—and without the knowledge of
current system resource availability—client failovers could cause system resource
overload, where different processor failures cause all the clients to failover to the
same processor. A well-known approach for maintaining deadlines of application
tasks in a processor is to ensure that its utilization remains below its schedulable
utilization bound [10]. If resource overloads occur, however, this could cause

76 J. Balasubramanian et al.

increased utilization that exceeds the schedulable bound in those processors,
thereby causing applications to miss deadlines. Failover targets must therefore
be chosen based on system’s resource availability, as well as replica’s resource
requirements, so that application timeliness requirements are not compromised.

• Challenge 3: Providing transparent and predictable failure recov-
ery. One way to provide appropriate failure recovery is to decide on a failover
target after receiving the CORBA comm failure exception. This approach in-
creases the time clients need to failover to an appropriate backup, however, and
thus affects application deadlines. Failover target information must therefore be
available at the client-side fault-tolerant middleware ahead of the failure time,
so that the clients can failover to appropriate backups quickly and predictably.

2.3 Limitations of FT-CORBA for DRE Systems

To support passive replication, the FT-CORBA [13] specification collects
CORBA objects into replication groups. Replica addresses are grouped by a stan-
dard mechanismcalled an interoperable object group reference (IOGR), which com-
prises a sequence of CORBA interoperable object references (IORs), each of which
points to a server replica IOR. FT-CORBA clients invoke operations using IOGRs
as if they were making invocations using IORs.

If a server object fails in the IOGR model the client-side ORB catches the
exception, and cycles through the IORs in the IOGR to handle the request
at a different replica. This approach ensures faster client failover and provides
clients with a transparent abstraction as though the service was provided by a
single server. If no IORs in the IOGR list are valid (e.g., if no replicas are live)
an exception is propagated to the client application so it can start a recovery
process to find a new set of server object addresses.

Although the IOGR provides a standardized, transparentmechanism for client-
side failover if a server replica fails, the overall architecture has the following short-
comings:

• No seamless integration with RT-CORBA. Not all RT-CORBA ORBs
support the FT-CORBA IOGR feature. Even if it is supported, there are no
guidelines on how the FT-CORBA services will work with RT-CORBA features,
such as thread pool with lanes and banded connections. Without these features
higher priority applications cannot be provided with fault-tolerance capabilities
in a timely manner due to lack of support for for prioritizing failure detections
and notifications.

• Fixed and load-unaware replica selection. FT-CORBA’s mechanism
of selecting the next IOR from a sequence provides fast failover. The default
FT-CORBA replica selection policy, however, does not consider each server’s
resource utilization, which may affect client response times after failover. For
example, due to dynamic task arrivals and changing system utilization levels,
a replica that was a suitable failover target at deployment time may be a poor
choice at runtime.

Towards Middleware for Fault-Tolerance in DRE Systems 77

These shortcoming of FT-CORBA for DRE systems described above motivate
the need for—and approach taken by—the Lw-FT-RT-CORBA standardization
effort.

2.4 Salient Features of Lw-FT-RT-CORBA

Toovercome the limitations ofFT-CORBAforDRE systems, Lw-FT-RT-CORBA
requires the integration of real-time and fault-tolerance capabilities into a DRE
system by design. Lw-FT-RT-CORBA combines the following capabilities: (1)
FT-enabled middleware, which provides fault-tolerance capabilities that does not
require any real-time features, e.g., a client-side interceptor can catch failure excep-
tions irrespective of the priority of the server process that has failed, (2)
FT-enabled real-time middleware, which provides fault-tolerance capabilities that
requires real-time features, e.g., a failure detector needs to differentiate between
the reporting of the failure of a higher priority object from that of a lower prior-
ity object so that fault recovery can be prioritized, and (3) middleware-independent
fault-tolerance mechanisms, which support adaptive fault-tolerance, e.g., fault-
tolerant decision making, such as failover target selection, can be made using algo-
rithms that are independent of the supported middleware.

The Lw-FT-RT-CORBA approach is different than the FT-CORBA approach,
which provisions all fault-tolerance capabilities using FT-enabled middleware. For
example, in FT-CORBA fault recovery is provided by (1) a fault detector, which
is a CORBA component that detects CORBA object failures, (2) a fault noti-
fier, which is a CORBA component that notifies CORBA object failures, and
(3) a client-side interceptor, which is a CORBA component that detects client-
side failure exceptions to redirect clients to the next profile in the server IOGRs.
As described in Section 2.3, however, these capabilities do not function properly
due to the non-adaptive, resource-unaware recovery mechanisms in FT-CORBA.
To address these limitations, Lw-FT-RT-CORBA uses a micro-kernel approach
that provisions fault-tolerance functionality via the combination of capabilities
described above that collaborate to provide real-time fault-tolerance capabilities
for DRE systems.

3 The Design of FLARe

This section describes the design of FLARe and shows how it addresses the
resource-aware fault recovery challenges described in Section 2.2. FLARe is de-
signed to address the requirements of Lw-FT-RT-CORBA i.e., provide both
availability and timeliness capabilities for DRE systems. Figure 1 shows the key
components of FLARe’s architecture, which includes protocols, mechanisms, and
services for supporting fault-tolerance capabilities using passive replication for
DRE systems.

The novel aspects of FLARe’s design include the combination of (1) client-side
FT-enabled middleware components, which transparently provide client redirec-
tion and request reinvocation, (2) server-side FT-enabled real-time middleware

78 J. Balasubramanian et al.

Fig. 1. FLARe Middleware Architecture

components, which monitor replica and process failures along with system param-
eters, such as CPU utilization, and help provide resource-awareand priority-aware
tunable fault-tolerance, and (3) infrastructure-specific middleware-independent
mechanisms, which use interfaces for replica registration and specifying applica-
tion QoS requirements to support fine-grained tuning of fault-tolerance policies to
ensure timely performance of DRE applications.

The interactions between the FLARe components combine real-time and fault-
tolerance features, and hence provide an open platform for evaluating key issues
in real-time fault-tolerance capabilities for DRE systems. Moreover, while de-
scribing the interactions between these different components, we also elaborate
on the design choices we made and patterns used to implement various entities
of FLARe’s architecture. FLARe’s pattern-based design enhances its flexibility
and portability, without impeding the primary objectives of fault tolerance and
real-time.

3.1 Providing Efficient and Predictable System/Failure
Management

DRE systems often operate in dynamic operating environments, where proces-
sor utillizations fluctuate due to dynamic application deployments and failures.
Changes in the system (e.g., increase in CPU load) must therefore be conveyed
to the fault-tolerant middleware quickly so appropriate actions can be taken.

Problem. In FT-CORBA, liveness checking is typically accomplished via an
is alive message from a fault detector component to all the CORBA objects

Towards Middleware for Fault-Tolerance in DRE Systems 79

it monitors. However, as described in [15], the failures and recovery occur at
the granularity level of a process and its address space. Liveness checking of
individual objects for failure detection can therefore introduce unwanted and
substantial overhead that adversely impacts real-time requirements. Moreover,
introducing messaging for liveness check introduces additional system overhead.

Moreover, multiple objects and processes could fail simultaneously in DRE
systems. Since the objects differ by their priority, failure and recovery manage-
ment of those objects must also be prioritized. What is needed therefore is a
resource monitoring infrastructure that is (1) decentralized, so that processor-
specific local monitors can monitor the liveness of processes and their hosted
objects, and (2) scalable and predictable, so that the failure as well as utiliza-
tion reports are communicated with the fault-tolerant middleware according to
the priority of the applications monitored.

Solution → Predictable and scalable resource monitors. As shown in
Figure 1, FLARe employs a pair of FT-enabled real-time middleware compo-
nents namely middleware replication manager and resource monitor to provide a
decentralized, and predictable failure and system management for DRE systems.
The middleware replication manager is composed of several sub-components, in-
cluding a (1) failure manager, (2) system manager, (3) resource manager, and
(4) fault-tolerance manager.

The failure manager receives failure notifications and works with the system
manager to start new replicas if the replication degree of replica is below an
acceptable threshold. The system manager receives system runtime information
(such as CPU utilizations at different processors) and works with the resource
manager to tune fault-tolerance decisions (e.g., failover targets) dyhamically. The
fault-tolerance manager works with the client-side and server-side middleware
to notify the fault-tolerance decisions made by the resource manager.

FLARe runs a resource monitor on each processor to track the CPU utilization
and liveness of the processes hosted by the processor. On Linux platforms, for
example, the resource monitor uses the /proc/stat file to estimate the CPU
utilization in each sampling period. This file records the number of “jiffies” (a
default duration of 10ms in Linux) when the CPU is in user, nice, system, and
idle modes. At the end of each sampling period, the resource monitor reads the
counters and estimates the CPU utilization as the fraction of time when the
CPU is not idle.

To perform liveness checking of processes in a processor, FLARe uses the
Acceptor/Connector [21] pattern that decouples connection establishment and
service initialization in a distributed system from the processing performed once
the service is initialized. Since the server process and resource monitor run on the
same host, the connection uses local connection mechanisms, such as a POSIX
local socket (also known as a UNIX domain socket) or Windows named pipes.

For example, on Linux each application process opens a passive (i.e., Accep-
tor role) POSIX local socket, and registers the port number with the resource
monitor. The resource monitor connects to (i.e., Connector role) and performs a
blocking read on the socket. If an application process crashes, the socket and the

80 J. Balasubramanian et al.

opened port will be invalidated. The resource monitor then receives an invalid
read error on the socket, which indicates the failure of the process.

Resource monitors generate periodic and event-driven notifications regarding
failures and system utilization. FLARe’s replication manager (the system and
failure manager sub-components) must handle these periodic requests from all
hosts it manages. The replication manager must therefore allocate appropriate
resources to serve these requests concurrently and these events may be treated
at different levels of priorities, depending on the criticality of the process and
processor being monitored.

Addressing the challenges outlined above requires an approach that can handle
incoming requests concurrently with negligible overhead stemming from context
switching and data copying activities. The client-side (resource monitors) defines
the priority at which the requests will be executed at the system and failure
managers. FLARe therefore uses RT-CORBA’s client propagated priority
model, which allows clients to dictate the CPU priority using which the server
executes the client request.

To allow the system and failure managers to serve the requests arriving at
different priorities, FLARe uses the RT-CORBA thread pool with lanes feature,
which partitions the available number of threads across different priorities, so
that each server can simultaneously serve multiple client requests arriving at
multiple priorities. The number of threads is configured at deployment time
depending on the number of resource monitors deployed in the system. By se-
lecting real-time features, such as thread pool with lanes, and integrating them
with fault-tolerance features, such as process liveness checking, FLARe provides
prioritized failure management for applications using the combination of the
FT-enabled real-time middleware components.

3.2 Providing Adaptive Failover Target Selection

For every replica in the system, failover targets should be determined based
on updated information about the processor utilizations and failures, so that
clients do not failover to replicas that (1) are overloaded, which can cause poten-
tial deadline misses, and (2) have already failed, which can potentially increases
failure recovery time.

Problem. Fault-tolerant middleware needs to make per-replica failover target
decisions based on algorithms [12, 2]. DRE systems, however, often have a wide
variety of applications with different characteristics and priorities. Hence, a single
decision making algorithm will not suffice for the needs of all applications. What
is needed, therefore, is middleware that can support real-time fault-tolerant de-
cision making based on various algorithms specialized for the needs of different
applications.

Solution → Adaptive resource manager. As described in Section 3.1, the
middleware replication manager has a subcomponent resource manager that
works with the system manager to tune fault-tolerance configurations of the sys-
tem in response to changing system configurations. FLARe’s resource manager

Towards Middleware for Fault-Tolerance in DRE Systems 81

makes run-time, resource-aware decisions about the fault-tolerance configura-
tions so that the clients can access the services in a fault-tolerant and timely
manner. Example fault-tolerance configurations include per-replica failover tar-
gets, per-replica physical mapping onto processors, and per-replica weaker con-
sistency optimizations. Research has been done in each of these decision-making
dimension (e.g., failover target selection) and many algorithms have been pro-
posed [12, 25, 1].

To allow the resource manager to make decisions using a wide variety of al-
gorithms, FLARe uses the Strategy pattern [5] to factor out similarities among
algorithmic alternatives. For each decision-making dimension, the resource man-
ager can be configured at deployment time with an algorithm strategy that is
customized for application-specific availability and timeliness requirements.

The capability to plug-in many different decision-making algorithms allows
FLARe to cater to the needs of a wide variery of applications. FLARe provides
a failover target selection algorithm that determines a list of failover targets
ordered by the predicted CPU utilization of the processors if a failover occurs
(the processor with the lowest predicted CPU utilization is the first in the list).
The algorithm and the subsequent performance within the context of FLARe
is described in [2]. Moreover, as described in Section 3.1, the system manager
receives information about the processor utilizations in a prioritized manner.
Hence, the resource manager can provide predictable fault-tolerance by working
on tuning the fault-tolerance configurations of higher priority objects rather than
lower priority objects, whenever there are changes in resource availability and
utilizations.

3.3 Providing Transparent and Predictable Failure Recovery

Client-side middleware in DRE systems must transparently handle failure ex-
ceptions caught as a result of process and processor failures and redirect clients
to appropriate failover targets in a predictable and faster manner.

Problem. The per-replica failover target information computed by FLARe’s
resource manager is used by the client-side middleware to redirect clients after
receiving a failure exception. The latency and timeliness properties of appli-
cations can be negatively affected, however, by invoking a remote method on
the resource manager to obtain the failover target address after receiving a fail-
ure. What is needed therefore are mechanisms that can proactively update the
failover targets on the client side.

Solution → Client-side redirectors. FLARe provides fast failover with pre-
dictable latencies by proactively updating the failover targets on the client side.
It therefore employs a client-side redirector in each client process to handle fail-
ures transparently to each client object. The client-side redirector comprises a
client request interceptor for each client object and a redirection agent in each
client process.

Interceptors are software components that can increase the flexibility of client
and server applications by modifying their behavior with little or no change

82 J. Balasubramanian et al.

to existing application software [21]. FLARe redirection agent uses a CORBA
client request interceptor [3] at system initialization time to handle CORBA
comm failure exceptions that are raised in response to server or service fail-
ures. CORBA in turn relies on the underlying network transport protocol’s (e.g.,
TCP) connection timeout mechanisms to detect server failures. Since TAO sup-
ports client/server communications using many different protocols, its failure
detection mechanism can be configured to use advanced fault-tolerance proto-
cols, such as SCTP [22].

After catching a failure exception the client request interceptor attempts to
redirect the clients to the appropriate failover target, rather than propagating
that exception to the client application. As mentioned in the solution to challenge
2 above, the resource manager maintains information about the failover targets
for each replica. One way to update the client request interceptor with these
failover target decisions would be to establish remote communications between
the resource manager and the client request interceptor. As discussed in [3],
however, portable interceptors are not remote objects and do not have their
own thread of control. No external service or object can thus invoke a remote
operation on the client request interceptor (which is a CORBA-based portable
interceptor) and the client request interceptor cannot periodically invoke a re-
mote operation on an external object or service.

Moreover, such a remote invocation will increase failover or failure recovery
latency. If an appropriate failover target information is available at the client
request interceptor even before the failure happens, then client redirection will
be predictable, fast, and timely, i.e., failover latency will only depend on the
time taken for the clients to receive the comm failure exception after a server
failure. FLARe’s redirection agent is a CORBA object that runs in its own
thread within the client process to allow FLARe’s resource manager to send
object failover information to the client request interceptor.

FLARe’s redirection agent communicates with FLARe’s resource manager so
it is updated with the failover information proactively, i.e., before failures occur.
Since it is conceivable that multiple clients may invoke the same server, the
resource manager uses real-time publish-subscribe communication to scalably
and efficiently disseminate the failover targets to all the concerned redirection
agents. After catching an exception, the client request interceptor contacts the
redirection agent to obtain the failover object address, and redirects the client
to that server object. By proactively selecting failover target updates, FLARe
can provide timely and predictable failover.

4 Related Work

Our work on FLARe can be compared with related research along the following
dimensions:

Real-time fault-tolerant systems. Delta-4/XPA [18] provided real-time fault-
tolerant solutions to distributed systems by using the semi-active replication
model. MEAD [17] and its proactive recovery strategy for distributed CORBA

Towards Middleware for Fault-Tolerance in DRE Systems 83

applications can minimize the recovery time for DRE systems. The Time-triggered
Message-triggered Objects (TMO) project [9] considers replication schemes such
as the primary-shadow TMO replication (PSTR) scheme, for which recovery time
bounds can be quantitatively established, and real-time fault tolerance guarantees
can be provided to applications. DARX [11] provides adaptive fault-tolerance for
multi-agent software platforms by dynamically changing replication styles in re-
sponse to changing resource availabilities and application performance.

FLARe builds upon and extends this prior work by focusing on a combination
of server-side, client-side, and infrastructure-specific middleware components.
These together address an important challenge of using passive replication in
fault-tolerant real-time systems: maintaining soft real-time performance after
failure recovery.

Scheduling algorithms. Fundamental ideas and challenges in combining real-
time and fault tolerance are described in [24], where imprecise computations
are used to provide degraded QoS to applications operating in the presence of
failures. [6] proposes adaptive fault tolerance mechanisms to choose a suitable
redundancy strategy for dynamically arriving aperiodic tasks based on system
resource availability. The Realize middleware [8] provides dynamic scheduling
techniques that observes the execution times, slack, and resource requirements
of applications to dynamically schedule tasks that are recovering from failure,
and make sure that non-faulty tasks do not get affected by the recovering tasks.

FLARe differs from these approaches in providing fault tolerance capabilities
to soft real-time applications. Rather than ensuring hard deadlines are met in the
presence of failures, FLARe focuses on minimizing the impact of failure recovery
on client response times and system resource utilization, and also provides timely
client failover to appropriate failover targets.

5 Concluding Remarks

The FLARe middleware described in this paper provides both timeliness and
availability to distributed real-time and embedded (DRE) systems. FLARe fo-
cuses on passive replication to meet the needs of resource-constrained envi-
ronments. FLARe identifies and provisions those fault-tolerance functionalities,
which if not designed properly could also affect the timeliness properties of the
applications. To design and implement those functionalities, FLARe overcomes
limitations of current middleware approaches, by providing a proactive, adap-
tive, and resource-aware fault-tolerance solution for clients.

The lessons we learned developing and applying FLARe thus far include:

• Common CORBA features, such as portable interceptors, and POSIX features,
such as local sockets, can be leveraged to provide fault tolerance capabilities
to soft real-time systems without modifying the implementation of standard-
compliant RT-CORBA ORBs. Moreover, well-known architectural and design
patterns can be carefully chosen to design key components of a fault-tolerant
middleware, so that the fault-tolerance functionalities can be provided in an
effective and timely manner.

84 J. Balasubramanian et al.

• FLARe currently does not support stateful applications, so its resource man-
ager uses a failover target selection algorithm that selects failover targets without
considering the consistency levels of the replicas. Supporting stateful applications
in DRE systems not only requires timely failover, but also supporting different
client consistency requirements, such as weak or strong consistency models. This
is part of our future work.
• FLARe is designed for environments where the networks provide bounded com-
munication latencies and have no single point of failure. Certain DRE systems,
however, run in environments where networks fail, which can cause resource
contention in the remaining links. Our future work is therefore focusing on inte-
grating FLARe with network QoS mechanisms, such as DiffServ and Bandwidth
Brokers so that critical communications can use network QoS mechanisms to
meet critical QoS requirements.

FLARe is open-source software that can be downloaded from www.dre.
vanderbilt.edu/∼jai/FLARe

References

1. Assayad, I., Girault, A., Kalla, H.: A bi-criteria scheduling heuristic for distributed
embedded systems under reliability and real-time constraints. In: DSN 2004, Flo-
rence, Italy, p. 347 (2004)

2. Balasubramanian, J., Tambe, S., Gokhale, A., Lu, C., Gill, C., Schmidt, D.C.:
FLARe: A Fault-tolerant Lightweight Adaptive Real-time Middleware for Dis-
tributed Real-time and Embedded Systems. Technical Report ISIS-07-812, Insti-
tute for Software Integrated Systems, Vanderbilt University, Nashville, TN (May
2007)

3. Bennani, T., Blain, L., Courtes, L., Fabre, J.-C., Killijian, M.-O., Marsden, E.,
Taiani, F.: Implementing Simple Replication Protocols using CORBA Portable
Interceptors and Java Serialization. In: DSN 2004, Florence, Italy, pp. 549–554
(2004)

4. Déplanche, A.M., Théaudi‘ere, P.Y., Trinquet, Y.: Implementing a semi-active
replication strategy in chorus/classix, a distributed real-time executive. In: SRDS
1999: Proceedings of the 18th IEEE Symposium on Reliable Distributed Systems,
Washington, DC, USA, p. 90. IEEE Computer Society, Los Alamitos (1999)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

6. Gonzalez, O., Shrikumar, H., Stankovic, J.A., Ramamritham, K.: Adaptive fault
tolerance and graceful degradation under dynamic hard real-time scheduling. In:
RTSS 1997, San Francisco, CA, USA, p. 79 (1997)

7. Douglas Jensen, E.: Distributed Real-time Specification for Java (2000),
java.sun.com/aboutJava/communityprocess/jsr/jsr 050 drt.html

8. Kalogeraki, V., Melliar-Smith, P.M., Moser, L.E.: Dynamic Scheduling of Dis-
tributed Method Invocations. In: 21st IEEE Real-time Systems Symposium, Or-
lando. IEEE, Los Alamitos (2000)

9. Kim, K.H., Subbaraman, C.: The pstr/sns scheme for real-time fault tolerance via
active object replication and network surveillance. IEEE Trans. on Know. and Data
Engg. 12(2) (2000)

java.sun.com/aboutJava/communityprocess/jsr/jsr_050_drt.html

Towards Middleware for Fault-Tolerance in DRE Systems 85

10. Lehoczky, J., Sha, L., Ding, Y.: The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior. In: RTSS 1989, pp. 166–171 (1989)

11. Marin, O., Bertier, M., Sens, P.: Darx: A framework for the fault tolerant support
of agent software. In: ISSRE 2003: Proceedings of the 14th International Sympo-
sium on Software Reliability Engineering, Washington, DC, USA, p. 406. IEEE
Computer Society, Los Alamitos (2003)

12. Van Moorsel, A.P.A.: The ’qos query service’ for improved quality-of-service deci-
sion making in corba. In: SRDS 1999, Lausanne, Switzerland, p. 274 (1999)

13. Object Management Group. Fault Tolerant CORBA, Chapter 23, CORBA v3.0.3,
OMG Document formal/04-03-10 edition (March 2004)

14. Object Management Group. Real-time CORBA Specification v1.2 (static), OMG
Document formal/05-01-04 edition (November 2005)

15. Object Management Group. Lightweight Real-Time Fault Tolerant CORBA
DRAFT RFP, OMG Document realtime/06-06-06 edition (June 2006)

16. Felber, P., Narasimhan, P.: Experiences, Approaches and Challenges in building
Fault-tolerant CORBA Systems. Transactions of Computers 54(5), 497–511 (2004)

17. Pertet, S., Narasimhan, P.: Proactive recovery in distributed corba applications.
In: DSN 2004, Florence, Italy, p. 357 (2004)

18. Powell, D.: Distributed fault tolerance: Lessons from delta-4. IEEE Micro. 14(1),
36–47 (1994)

19. Prez-Sorrosal, F., Patino-Martinez, M., Jimenez-Peris, R., Vuckovic, J.: Highly
available long running transactions and activities for j2ee applications. In: ICDCS
2006: Proceedings of the 26th IEEE International Conference on Distributed Com-
puting Systems, Washington, DC, USA, p. 2. IEEE Computer Society, Los Alami-
tos (2006)

20. Ravindran, B., Curley, E., Anderson, J.S., Jensen, E.D.: On best-effort real-time
assurances for recovering from distributable thread failures in distributed real-time
systems. In: ISORC 2007: Proceedings of the 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing, Washing-
ton, DC, USA, pp. 344–353. IEEE Computer Society, Los Alamitos (2007)

21. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern- Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, vol. 2. Wiley &
Sons, New York (2000)

22. Stewart, R., Xie, Q.: Stream Control Transmission Protocol (SCTP) A Reference
Guide. Addison-Wesley, Reading (2001)

23. Sun Microsystems. Java Specification Request, JSR 117, J2EE APIs for Continu-
ous Availability, JSR 117 edition (April 2001)

24. Wang, F., Ramamritham, K., Stankovic, J.A.: Determining redun- dancy levels for
fault tolerant real-time systems. IEEE Transactions on Computers 44(2), 292–301
(1995)

25. Cai, Z., Kumar, V., Cooper, B.F., Eisenhauer, G., Schwan, K., Strom, R.E.:
Utility-Driven Proactive Management of Availability in Enterprise-Scale Informa-
tion Flows. Proceedings of ACM/Usenix/IFIP Middleware, 382–403 (2006)

Using Object Replication for Building
a Dependable Version Control System

Rüdiger Kapitza1, Peter Baumann1, and Hans P. Reiser2

1 Dept. of Comp. Sciences 4, University of Erlangen-Nürnberg, Germany
rrkapitz@cs.fau.de

2 LaSIGE, University of Lisboa, Portugal
hans@di.fc.ul.pt

Abstract. Object-oriented technologies are frequently used to design and
implement distributed applications. Object replication is a well-established
approach to increase the dependability for such applications. Generic replication
infrastructures often fail to meet non-standard application-specific requirements
such as support for client-side computing. Our FTflex replication infrastructure
combines the fragmented object model with semantic annotations in order to
customize and optimize replication mechanisms, and thus provides a more
flexible replication infrastructure.

This paper presents DiGit, a replicated version control system based on the
architecture of Git. DiGit is implemented with the help of the FTflex infrastructure
for object replication. The contributions of this paper are twofold. First, the
paper evaluates the fitness of our replication framework for a specific, complex
application. We identify two advantages of the replication infrastructure: the
ability to provide client-side code as a conceptually integral part of a remote
service, and support for an optimized protocol for remote interaction. As a second
contribution, the paper presents a powerful replicated version control system and
shows the lessons learned from using object replication in such a system.

Keywords: Object Replication, Version Control System.

1 Introduction

Object-oriented technologies are frequently used to design and implement distributed
applications. Such applications are faced with failures of various kinds. For example,
nodes may crash or may even suffer from malicious intrusions, and communication
between nodes may temporarily break down. Object replication is a well-established
approach for coping with such kinds of failures. Many distributed object infrastructures
provide support for object replication, either as an integral part or as an external add-on.

Generic object replication infrastructures frequently have some limitations. Being
generic implies that the infrastructure implementation has to be suitable for many
different kinds of applications. It is a hard challenge for a middleware to provide a
range of configuration variants that include an ideal solution for every application,
and make an automated selection of the best variant. Fragmented objects [14,11,19]
are a technology that provides means for flexible adjustment to individual needs by
the generation of custom code. This code substitutes the static stub and skeleton

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 86–99, 2008.
c© IFIP International Federation for Information Processing 2008

Using Object Replication for Building a Dependable Version Control System 87

that is commonly used in distributed object middleware. The FTflex replication
infrastructure [20] combines the fragmented object model with semantic annotations in
order to customize and optimize replication mechanisms. In this paper, we use a specific
complex application—a distributed version control system—to assess the replication
mechanisms provided by that replication infrastructure.

Version control systems, such as Concurrent Versions System (CVS) [3] and
Subversion (SVN) [17], are commonly used for software development. Most systems
use a central server for storing all data and history information. This server may fail
due to hardware or software problems. If developers use a third-party service (as it is
the case for many open-source projects that use, for example, the SourceForge service),
there is also the risk of intentional shut-down of that service. Replicating a repository
on multiple hosts, potentially located in independent administrative domains, helps to
maintain system functionality in spite of such failures. Usually, the repositories of large
projects are mirrored using tools like rsync or FTP. This approach reduces the risk of
data loss in case of failures and provides scalability for read-only access. However,
manual intervention is necessary to determine the last valid state of the repository and
to set up the a new primary repository to recover from a failure of the main site. During
this time a coordinated exchange of development progress is hard to achieve.

In this paper, we present the design of DiGit, a replicated version control system
based on the architecture of Git [4], which is the system that the Linux kernel project
currently uses for version management. DiGit provides fault-tolerant replication mecha-
nisms for a global repository in combination with decentralized client-side repositories.
DiGit uses the FTflex object replication infrastructure and thus its implementation is
based on the concept of fragmented objects. The replication infrastructure uses semantic
information on operations to tailor the provided mechanisms. In essence, this paper
makes two important contributions. First, it evaluates the fitness of the adaptable FTflex
replication framework for a specific, real-world application. Second, it presents an
architecture for a powerful replicated version control system that is able to transparently
tolerate a limited number of faults without service unavailability and shows the lessons
learned from using object replication in such a system.

This paper is structured as follows. First, we survey related work. In Section 3,
we briefly describe the generic FTflex infrastructure. Section 4 presents the design of
our DiGit distributed version control system. Then we outline evaluation results. In
Section 6, we discuss the lessons learned from our implementation. Section 7 concludes.

2 Related Work

Object replication is supported in many distributed middleware systems. A prominent
example for such support is the Fault-Tolerant CORBA (FT-CORBA) standard [16].
This standard is implemented in existing systems in various ways, for example
using an interception approach in the Eternal system [15], an integration approach in
Orbix+Isis [12], or a service approach in OGS [6]. The FT-CORBA standard is an
example of a complex standard for fault-tolerant middleware infrastructures targeted at
heterogeneous systems. Even after maturing for more than a decade, many deficiencies
can still be identified [7]. An important observation is that replication cannot easily

88 R. Kapitza, P. Baumann, and H.P. Reiser

be added to object-oriented applications in a transparent way. In this paper, we
discuss some slightly different limitations of existing object-replication frameworks:
The main challenges that arise from replicating a version control system are the local
manipulation of files at the client side and efficient protocols for the transfer of large
data (e.g., client operations on the repository).

The issue of customizing (and thus optimizing) remote communication for simple,
non-replicated distributed objects has previously been investigated in various projects.
Usual solutions provide a framework [18] or, as in Kurmann and Stricker [1],
completely redesign the communication stack and the ORB. Such extensions to object
middleware systems are incompatible with extensions for fault-tolerant replication. For
example, efficient communication needs to be integrated into state transfer, and all client
operations that modify the object state must be applied consistently to all replicas.

Fragmented objects have previously been used to construct flexible distributed
systems. Replication with fragmented objects has previously been used in Globe [2].
Unlike the version control system that we propose in this paper, Globe does not consider
client-side computing or custom communication protocols.

While traditional version control systems such as CVS and SVN use a central
repository server, a decentralized approach has gained popularity in systems such as
Arch [8], Darcs [5], Monotone [10], and Git [4]. These systems focus on a decentralized
development model, in which each developer can have their own local repository. This
approach makes off-line work under local revision control possible. Local changes
can later be re-integrated into a central main branch, usually maintained by a head
developer. The head developer may also allow authorized users to write directly to
the central repository, thus allowing to mimic a centralized development model as
well. If the central repository becomes unavailable, only local repository operations are
possible, and interaction between developers is not possible. In DiGit, we also support
developer-side local repositories, but the key advantage of our system is that it aims at
increasing the availability of the central repository by fault-tolerant replication.

The Pastwatch [22] version control system is similar to our approach in the sense
that it replicates a repository on multiple hosts, while providing a functionality similar
to CVS. However, Pastwatch uses optimistic replication on a peer-to-peer-infrastructure
and does not make strong guarantees about data consistency. Conflicting modifications
by multiple developers are handled by creating branches that require manual conflict
resolution. DiGit, on the other hand, uses a general-purpose replication infrastructure
(FTflex) and provides strong consistency guarantees on the replicated repository.

3 Replication Infrastructure Based on Fragmented Objects

The FTflex object replication infrastructure [20] uses the fragmented-object model
[14,11,19] provided by the Aspectix middleware to integrate replication mechanisms
into distributed applications. From an abstract point of view, a fragmented object is
defined by its identity, interface, functionality, and state. The implementation of these
items is not bound to a specific location, but instead can be distributed arbitrarily
over multiple fragments, located on multiple hosts. The FTflex infrastructure supplies
a code generation tool that creates object-specific fragment code for client access and

Using Object Replication for Building a Dependable Version Control System 89

for replica consistency management. The replication of an application remains fully
transparent to clients. Semantic annotations at the interface level allow the developer to
customize the provision of fault tolerance.

3.1 Replication with Fragmented Objects in FTflex

For realizing a replicated service, FTflex uses the fragmented object infrastructure
of Aspectix to load service-specific fragment code at the client side and at replica
locations, without requiring internal middleware modifications (see [9] for details).
Fig. 1 shows a fragmented object that implements a fault-tolerant service; this object is
internally composed of replica fragments and access fragments.

The development process of a replicated service in FTflex consists of defining
the global object interface in CORBA IDL, implementing the functional parts of
the service, and creating the fragment code. The creation of fragment code is done
automatically by tools; these tools can make use of semantic annotations provided by
the developer, as we will describe in Section 3.2. The annotations enable creating a
customized layer between the client and the core framework and also between the
framework and the replica implementation.

Host A

Host D Host E

Host B Host C

Replica
Fragment

Client Client

Replica
Fragment

Replica
Fragment

Access
Fragment

Access
Fragment

Fragmented
Object

Fig. 1. A replicated service realized as a fragmented object

The generated fragment code handles most replication-relevant issues. It implements
marshalling and unmarshalling, similar to an ordinary stub. Furthermore, it handles
communication of clients with an available member of the replica group, ensuring at-
most-once call semantics even in case of fail-over handling. With an active replication
strategy, all client requests are distributed to the replicas using totally ordered group
communication. In addition, each replica fragment contains semantic information about
methods that has been extracted from the annotations. This information is used to
improve the performance of request executions.

The Aspectix middleware uses CORBA IORs to reference fragmented objects via
an APX profile. This profile contains a unique object ID, a specification of the initial
fragment type to load and contact information of other fragments. The initial fragment
type can be specified in a language-independent way; a code-loading service [13] is

90 R. Kapitza, P. Baumann, and H.P. Reiser

used for obtaining the corresponding code for the local platform. The contact data in
the APX profile contains information about the replica group.

3.2 Semantic Information and Code Generation

Similar to a traditional CORBA IDL compiler for stubs and skeletons, FTflex can
generate client-side and replica-side fragments using IDL interface information. In
addition, our architecture allows the developer to express semantic knowledge in
order to improve and customize the replication mechanisms. Currently, FTflex supports
several annotations on a per-method basis: annotations can be provided to specify if
an object operation interacts with the replica and modifies its state, if it is a read-only
operation, if it is parallelizable with other methods, or if it is a method that can be
computed locally at the client side without interacting with the replica group.

The current prototype of the code-generation tool is based on IDLflex [21]. IDLflex
parses CORBA IDL, evaluates an XML-based mapping specification, and uses this
specification to create arbitrary output code. The tool supports semantic annotations
in IDL files, expressed as #pragma annotate statements. A custom mapping
specification defines how to evaluate these statements and defines the corresponding
code-generation process.

If a method is marked as read-only, the communication with the replica group
will be handled differently (using unicast instead of multicast). Information about
parallelizability is passed from the replica fragment to the local application-level
scheduler. Furthermore, annotations affecting the location of code have an influence on
whether methods are part of the external service interface (and thus part of the client-
side fragment interface), whether they are implemented in the client-side fragments
only (but may be absent in the replica fragments), or whether they are implemented
in replica fragments. Client-local method implementations (which are still part of the
abstract service interface) are useful for methods that, for example, validate client data
in a state-independent way or that provide static information to the client.

4 Replicated Decentralized Version Control

This section presents the design and implementation of DiGit, a reliable distributed
version control system. DiGit uses FTflex for replicating a central repository service,
and thus evaluates the FTflex infrastructure using a complex real-world application.

4.1 Background

A version control system records the development history and enables collaboration
of multiple developers by supporting distributed and concurrent work on a source-code
tree. To take part in the development, a developer checks out the sources, modifies them,
and finally commits her changes. If the repository is provided via a central service (e.g.,
CVS), the unavailability of this service prevents coordinated development progress.

Our DiGit implementation aims at offering high availability of a virtual central
repository. By virtual we mean that the repository is, in fact, replicated over multiple

Using Object Replication for Building a Dependable Version Control System 91

physical hosts, but for clients it appears as a single central repository. Our prototype
re-implements the Git system that was originally invented by Linus Torvalds. Git
has a lean storage model that can be implemented in a straightforward way; it is
proven to work well in large-scale projects such as the Linux kernel. Git already offers
decentralized revision control of software. However, this support primarily targets the
local availability of a repository and the possibility to later re-integrate local changes
to a remote main repository. A public main repository, such as used in the case of the
Linux project, still represents a single point of failure. Once down, no further check-
outs and check-ins are possible. Thus, a centralized, prompt exchange of development
progress is stopped. In addition, Git provides no out-of-the-box support for mirroring
or replication of the repository on order to achieve scalability and fault tolerance. In
the context of the Linux project this is solved by considerable big hardware efforts (see
http://www.kernel.org) and replication via FTP or rsync. For this reason, the main goals
of our reimplementation are to achieve fault tolerance and high availability without
requiring external mechanisms or manual intervention.

Next, the basic concepts of Git and its storage format are explained. Then, the
architecture and the API of our replicated Git repository are described. Our prototype
implementation provides a command-line tool for repository management, but we will
not focus in this tool.

4.2 Basic Concepts of Git

The storage model of Git is composed of four basic object types that are stored as
ordinary files on disk. Each object has a header that identifies the type and the size of
the object. The files are named after the SHA1 hash calculated over the content. Any
modification to a file will result in a mismatch between the file content hash and the file
name, and these modifications can easily be detected.

The four basic object types are Blob, Tree, Commit, and Tag. A Blob represents a
file that is under version control. A Blob does not reference any other object. A Tree
object contains of a list of names that reference Blob and Tree objects, together with
meta data for each list entry, such as access time and permissions. A Tree object thus is
similar to a directory. Third, a Commit object uniquely identifies a certain version of a
branch. A Commit object consists of a changelog message, the names of the modified
Tree objects, and the name of the direct ancestor Commit objects if there are any. A Tag
object offers the additional support to uniquely identify and secure certain source code
versions by a name and an optional certificate.

Fig. 2 illustrates the basic storage model of Git. The example shows the use of the
three main object types, Blob, Tree, and Commit. Three files are represented by Blobs.
There is one Tree object that represents the project directory and one Commit object
that describes the initial version.

If a developer commits changes to the repository, all modified files have a different
hash value than before and thus result in new Blobs. This leads to changes in the
corresponding Tree objects, which results in different hash sums of the Trees and thus
in the generation of new Tree objects. The Commit object documents the dependencies
between the former version of the project and the new one. Fig. 3 shows three check-in

92 R. Kapitza, P. Baumann, and H.P. Reiser

Fig. 2. Example of the basic Git storage model

operations on a repository with two files: the first operation creates the initial version,
the second revision only modifies one file, and the third update changes all files.

This structure enables easy branching and merging of different development lines.
The only things that are necessary are to store the modified files and to insert a new
Commit object that references the joint branches.

Fig. 3. Commit operation in Git

The Git storage model can be implemented in a straightforward way, and it prevents
the undiscovered modification of files due to the rigorous usage of hashes. The
drawback of the storage model is the redundancy it introduces. Versions that differ
only slightly result in completely new Blob objects. This leads to an enormous waste
of storage. Common version control systems like CVS or SVN usually store only the
difference between two successive versions of files. To achieve a similar behaviour,
Git supports custom archives, named pack files. A pack file is a collection of objects,
individually compressed, with delta compression applied. These pack files are used to
reduce the repository size by archiving older revisions and to enable an efficient network
transfer for data-intensive repository operations, such as the initial checkout of a project.

4.3 Design of the DiGit Version Control System

Git uses a distributed development model that requires every developer to have their
own local repository. The same basic model is used in our replicated variant. The goal
of DiGit is to provide the same functionality as Git for the local repository operations,

Using Object Replication for Building a Dependable Version Control System 93

Host A DIGIT
Access Fragment

index
repo-
sitory

working
copy

Client

Host B DIGIT
Replica Fragment

index
repo-
sitory

working
copy

Client
other
fragments

Fig. 4. A DiGit service is composed of access fragments and repository fragments, and both
manage a working copy, an index, and the repository

and in addition support a replicated global repository that remains available in spite of
the failure of some replicas.

DiGit is implemented as a fragmented object, as illustrated by Fig. 4. The object
interface of the DiGit service offers an interface that includes methods to operate on
the local as well as on the global repository. A single fragment handles both kinds of
repositories. Operations on the local repository are executed locally, while operations
on the replicated repository require communication with the group of replicas.

A client-side fragment may either work as a smart stub to access a remote group
of replica fragments, or it may be part of the replica group itself. A local repository
and a local replica of the global repository share the same storage. This means that a
data object that is stored in both needs only a single entry in the storage under its hash.
Furthermore the hash is registered in a shared index file for fast access.

The local repository can be synchronized to the global repository in the same way
as a local Git repository is synchronized to a remote server. A developer does not
operate directly on the global repository. Instead a copy of the global repository,
called a clone, is created in the local repository, and all local modifications are first
committed to a local branch of that clone. A pull() operation transfers updates from
the global repository to the local clone, and these updates can then be merged to the
local development branch. Conversely, push() applies changes in the local branch to
the global repository.

Most of the DiGit operations operate on the local working copy, the index, or the
local repository. These operations are implemented in a client-side fragment in a way
that closely resembles the original Git implementation. The operations for cloning,
pushing, and pulling repository data are the key operations that access the global
repository. The main challenge that the DiGit implementation addresses is to make
these operations work reliably and efficiently on a group of repository replicas.

4.4 DiGit Operations on a Local Repository

The DiGit methods for local revision management are annotated via the local keyword
(see interface definition in Fig. 5). This tells the FTflex framework that the operations
are implemented in the client-side fragment instead of at a remote server fragment.

At this point, we assume that the client-local repository is already populated by data
from the global repository (how this is achieved is explained in the following section).
A developer can checkout() a certain source version from the local repository into

94 R. Kapitza, P. Baumann, and H.P. Reiser

#pragma annotate(local)
void checkout(in string ref) raises (NonExistingBranch, NonExistingObject);

#pragma annotate(local)
string add(in string filePath);

#pragma annotate(local)
string refresh(in string filePath);

#pragma annotate(local)
string commit(in string ref) raises (NonExistingObject);

#pragma annotate(local)
boolean merge(in string ref) raises (NonExistingBranch);

#pragma annotate(local)
void branch(in string name) raises (NonExistingBranch);

Fig. 5. Basic operations to manage the local repository

a local working directory, and can add() new files to the repository. The commit()
operation creates a new version in the local repository, and the merge() operations
updates the local working copy with data from the repository. If a certain source version
should be used for subsequent independent development, the developer can use the
branch() operation a new development branch.

Identical to Git, the data of files is internally stored in an index file. An add()
operation automatically adds the content of the file at addition time to the index. The
index content defines the updates that will be made to the local repository by the
commit() operation. The refresh() operation updates the index data with the file
data in the local working copy. With the explicit refresh() operation, a developer
has the option to collect distinct changes for the next commit while keep on developing.

4.5 DiGit Operations on a Distributed Repository

The part of the DiGit interface relevant for operations on the distributed global
repository is shown in Fig. 6. Several of the operations, such as the initial check-
out of a repository and the update of large source trees, are data intensive. Such
data intensive operations are a great challenge for replication infrastructures based
on distributed object middleware. Many infrastructures provide only a plain remote
invocation mechanism without dedicated support for efficient bulk data transfer.

The fragmented object model provides an alternative solution, as a service developer
has the freedom of choice to use arbitrary object-internal communication. DiGit uses
this approach to make a clear separation between control messages and file transfer,
wherever it is possible. Control messages and state-modifying messages are handled by
the implemented framework as standard method invocations, whereas data is transferred
via an adapted custom protocol taken from the original Git implementation.

First of all, a decentralized Git service has to be initialized and started. This is
achieved by creating an initial replica on some host, and this replica has an associated

Using Object Replication for Building a Dependable Version Control System 95

#pragma annotate(local)
boolean clone(in string path);

#pragma annotate(local)
boolean pull();

#pragma annotate(local)
BranchArray push();

BranchArray pushPack(in ByteArray pack, in BranchArray old, in BranchArray new);

#pragma annotate(readonly,private)
StringArray getRepositoryServers();

#pragma annotate(private)
void addRepositoryServer(in string address);

Fig. 6. Operations to manage and synchronize the local with the global repository

IOR for a fragmented object. All service replicas provide not only a complete copy
of the repository, but also run a TCP server for bulk data transfer. This server is
started during the creation of a replica. As soon as an initial service replica has been
successfully started, any client can use the repository service by binding to its IOR.

After binding to the repository service, the client has to populate the local repository
using the sources of the replicated global repository. Only after this step, a developer
can use the set of methods for local repository management described before. The
clone() method populates the local repository with a copy of the global repository.
The client-side access fragment selects one of the service replicas and requests a transfer
of the current repository state. The TCP server of the contacted replica provides this
state as a pack file. The client-side fragment uses the pack file to populate the local
clone of the repository.

As the client-side IOR that contains contact addresses may partially be out of date,
the replica group provides a getRepositoryServers() method that returns all
data server addresses. This method is annotated as private and read-only method, which
means that it is not visible on the outer interface of the DiGit services, and that it is
invoked at only a single replica, instead of being distributed to all replicas.

After the repository of the access fragment has been initialized, it can be updated by
calling pull(). The pull()method is also implemented as a custom local operation.
It requests the current state of the repository from one of the replicas using the TCP
server for bulk transfer. The bulk transfer implements an interactive process with the
replica. First, the replica returns meta data about all branches and their current head
versions (the last commits). The access fragment compares this information with the
entries of the global part of the repository and then determines the missing commit
objects. Finally, all modified objects are sent to the client as a pack file.

A developer commits local changes into the replicated global repository by calling
the push() method. This local method communicates with the bulk transfer server of
a replica to determine whether there is a conflict with the global repository. If the global
state has been modified since the last comparison, the return values signals a conflict,

96 R. Kapitza, P. Baumann, and H.P. Reiser

which has to be resolved before the changes can be committed to the global repository.
Otherwise, the method generates a pack file that describes the updates to be made
to the central repository. The pack file is then passed to the pushPack() method,
which consistently modifies the state in the replicas. This global state modification is
executed with the generic replication methods that the FTflex replication infrastructure
provides. This implies that the update is consistently distributed to all replicas using
totally ordered group communication.

Setting up a new replica requires a state transfer. The generic way for creating
additional replicas in FTflex is first to bind to the IOR of the replicated service (thus
instantiating a local access fragment), and then to upgrade the local fragment to a full
replica. In DiGit, a local access fragment generally has a clone of the central repository.
Thus, there is no need for a full state transfer from existing replicas to the new replicas.
However, the local clone of the global replicated repository could be outdated, as there
might have been commits to global repository since the last invocation of pull().
An extended state transfer implementation accounts for this fact and minimizes the
transfer costs. The new replica submits revision information about its local copy of the
global repository to all state providing nodes. Next, the replicas use this information
to generate a pack file that is transferred to the joining replica. After this operation, the
new replica adds the address of its data server via addRepositoryServer() to the
set of state-providing replica servers.

5 Evaluation

This section evaluates the basic operations of our prototype and compares a DiGit
repository with three replicas with the original non-replicated implementation of Git
version 1.5.3.7. All measurements have been made in a 100 MBit/s switched Ethernet
network on a homogeneous set of PCs with a AMD Athlon 2.0 GHz CPU and 1 GB
RAM, using Linux kernel 2.6.17 and SUN Java SDK 1.5.0 09. The tests used a small
project repository hosting 600 files with a history of 504 revisions and a size of 87 MB.
For Git we used ssh as underlying remote protocol. We focused on operations with
remote interaction. Tab. 1 summaries the results.

First we evaluated the time to initialize a client and clone the repository from a
remote site or a remote global repository in case of DiGit. For DiGit this operation
is independent from the number of replicas as clone represents a read-only operation
and only one replica is accessed. Albeit using a similar protocol and performing almost
identical operations Git is 6 times faster. The reason for this large performance gap lies
in fact that the native Git implementation is highly optimized and makes heavy use of
memory mapped files and uses faster compression routines to build the pack files, while
our DiGit prototype does not yet use such techniques.

Next we measured the time to set up a new replica from an up-to-date client node.
This operation is important if a replica crashed or was intentionally shut down and needs
to be replaced. It took 793 ms on average to integrate a initialized client node.

This leads to the last two experiments. We updated the global/remote repository via
push. The update consisted of 100 locally committed revisions. This time Git was twice
as fast as DiGit. The reasons are similar to the first measurement, but in addition the

Using Object Replication for Building a Dependable Version Control System 97

Table 1. Measurements DiGit vs. Git

Initialize client fragment / Clone Become a replica Push (100 revisions) Pull (up to date)

DiGit 90843 ms 793 ms 20866 ms 15 ms

Git 14613 ms 10271 ms 1665 ms

pushed revisions have to be distributed to all replicas via the group communication
framework when using DiGit. The last measurement pulled the latest revisions from
the remote/global repository. In the context of the measurement the local repository
include already the current version so we measured only the request. This time DiGit
performed much better than Git. The reason is that DiGit had an open connection from
the client to the server, whereas for Git the connection process took most of the time.

6 Lessons Learned

We discuss the following three questions in order to analyse our replication strategy for
the version control application:

– Is object replication suitable for providing a dependable version control system?
– What are the potential benefits from the fragmented object model?
– What are the potential benefits from semantic annotations?

In general, it is not easy to describe a version control system as a service object with
an adequate interface, because there is an inherent lack of distribution transparency.
Usually, the interface of a remote service is the basic contract for the interaction of a
client with a remote service.

In the context of a version control system, however, the service functionality is not
limited to the remote server, but also includes the protocol for applying modifications
to client-local file. A typical object-oriented implementation would only specify the
interface of the remote service, and let the client implement all the parts that are
necessary at the client side. The fragmented object model makes a huge difference here,
as client-side functionality can be implemented as a fragment of the version control
service. This fragment is conceptionally part of the service itself, and it can be loaded
automatically at the client, using a dynamic loading service if it is not available locally.

A second requirement is the need for efficient bulk data transfer for data-intensive
operations. If the repository is implemented as an object-oriented service, this
requirement is also hard to fulfil with standard replication infrastructures for objects.
However, the concept of fragmented objects can again provide a large benefit: A local
fragment at the client side can implement custom optimized communication protocols
between client-side fragments and repository fragments.

The dynamic loading of fragments at the client side is, of course, faced with security
considerations. These can be addressed by using digital signatures for code that is
loaded automatically.

Finally, annotations are an important aspect to improve throughput. The DiGit
implementation uses annotations mainly to specify that code shall be local to the client.

98 R. Kapitza, P. Baumann, and H.P. Reiser

This is not only used for code that handles the local repository and working copy,
but also for implementing custom mechanism for bulk transfer of data. For interaction
between fragments, our prototype uses private methods, which are not visible to clients,
but available for internal use in client-side fragments. The read-only annotation speeds
up the method that queries the up-to-date replica list.

7 Conclusions

This paper presented the design of DiGit, a replicated version control system based Git.
Our system provides a consistent, dependable central repository even in failure situation
by using efficient object replication technology. Our approach differs from most current
distributed version control systems, which typically use a single central repository, in
combination with decentralized local repositories that allow the tracking of changes
during times in which the central repository is not available. Our approach replicates the
central repository in order to make it more available. DiGit can be combined with local
repositories, which are still useful, for example, for clients with no network connectivity
at all and for local development.

A useful future extension of DiGit could allow developers to replicate their local
repositories as separate branches in the global repository. This way, snapshots of their
work could be accessed by other developers and their work would be preserved if
their local machine crashed. Furthermore, additional evaluation could focus on WAN
scenarios and performance in failure situations.

The replication of DiGit has been realized with support from our FTflex replication
infrastructure. This infrastructure uses fragmented objects and annotations-based code
generation in order to provide a high degree of customizability. The DiGit system
benefits from this architecture in a way that would not have been possible in a traditional
object replication infrastructure. First, the fragments allow loading repository-specific
code automatically at the client side for manipulating the client-local repository.
Conceptionally, this code is still part of the remote central repository. Second, the
annotations allow optimizing the performance of the replication strategies.

References

1. Kurmann, C., Stricker, T.M.: Zero-copy for CORBA - efficient communication for distributed
object middleware. In: 12th IEEE Int. Symp. on High Performance Distributed Computing,
pp. 4–13. IEEE Computer Society, Los Alamitos (2003)

2. Bakker, A., Amade, E., Ballintijn, G., Kuz, I., Verkaik, P., van der Wijk, I., van Steen,
M., Tanenbaum, A.S.: The globe distribution network. In: Proc. of the USENIX Annual
Conference, pp. 141–152 (2000)

3. Bar, M., Fogel, K.: Open Source Development with CVS, 3rd edn. Paraglyph (2003)
4. Baudis, P.: Git - fast version control system, http://git.or.cz
5. Darcs, http://abridgegame.org/darcs
6. Felber, P.: The CORBA Object Group Service: A Service Approach to Object Groups in

CORBA. PhD thesis, EPLF, Switzerland, Number 1867 (1998)
7. Felber, P., Narasimhan, P.: Experiences, strategies, and challenges in building fault-tolerant

CORBA systems. IEEE Trans. Comput. 53(5), 497–511 (2004)

http://git.or.cz
http://abridgegame.org/darcs

Using Object Replication for Building a Dependable Version Control System 99

8. GNU arch, http://www.gnu.org/software/gnu-arch
9. Hauck, F.J., Kapitza, R., Reiser, H.P., Schmied, A.I.: A flexible and extensible object

middleware: CORBA and beyond. In: Proc. of the Fifth Int. Workshop on Software
Engineering and Middleware. ACM Digital Library (2005)

10. Hoare, G., Smith, N., Scherger, D.: Monotone - A distributed version control system,
document version 0.35 (2006)

11. Homburg, P., van Doorn, L., van Steen, M., Tanenbaum, A.S., de Jonge, W.: An object model
for flexible distributed systems. In: Proc. of the 1st Annual ASCI Conference, pp. 69–78
(1995)

12. IONA and Isis. An introduction to Orbix+Isis. IONA Technologies Ltd. And Isis Distributed
Systems, Inc. (1994)

13. Kapitza, R., Schmidt, H., Bartlang, U., Hauck, F.J.: A generic infrastructure for decentralised
dynamic loading of platform-specific code. In: Indulska, J., Raymond, K. (eds.) DAIS 2007.
LNCS, vol. 4531, Springer, Heidelberg (2007)

14. Makpangou, M., Gourhant, Y., Narzul, J.-P.L., Shapiro, M.: Fragmented objects for
distributed abstractions. In: Casavant, T.L., Singhal, M. (eds.) Readings in distributed
computing systems, pp. 170–186. IEEE Computer Society Press, Los Alamitos (1994)

15. Moser, L.E., Melliar-Smith, P.M., Narasimhan, P.: Consistent object replication in the eternal
system. Theor. Pract. Object Syst. 4(2), 81–92 (1998)

16. Object Management Group (OMG). Common object request broker architecture: Core
specification, version 3.0.2. OMG document formal/02-12-02 (2002)

17. Pilato, C.M., Collins-Sussman, B., Fitzpatrick, B.W.: Version Control with Subversion, 1st
edn. O’Reilly Media, Sebastopol (2004)

18. Pyarali, I., Harrison, T.H., Schmidt, D.C.: Design and performance of an object-oriented
framework for high-speed electronic medical imaging. Computing Systems 9(4), 331–375
(1996)

19. Reiser, H.P., Hauck, F.J., Kapitza, R., Schmied, A.I.: Integrating fragmented objects into a
CORBA environment. In: Proc. of the Net.ObjectDays, pp. 264–272 (2003)

20. Reiser, H.P., Kapitza, R., Domaschka, J., Hauck, F.J.: Fault-tolerant replication based on
fragmented objects. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, pp.
256–271. Springer, Heidelberg (2006)

21. Reiser, H.P., Steckermeier, M., Hauck, F.J.: IDLflex: a flexible and generic compiler for
CORBA IDL. In: Proc. of the Net.Object Days, pp. 151–160 (2001)

22. Yip, A., Chen, B., Morris, R.: Pastwatch: a distributed version control system. In: Proc. of
the USENIX/ACM 3rd NSDI (2006)

http://www.gnu.org/software/gnu-arch

Recovery Mechanisms for Semantic Web

Services

Kevin Wiesner, Roman Vacuĺın, Martin Kollingbaum, and Katia Sycara�

The Robotics Institute, Carnegie Mellon University
{kwiesner,rvaculin,mkolling,katia}@cs.cmu.edu

Abstract. Web service-based applications are widely used, which has
inevitably led to the need for proper mechanisms for the web service
paradigm that can provide sustainable and reliable execution flows. In
this paper we revise recovery techniques in OWL-S and show how se-
mantic annotations may ensure seamless web service provision in a so-
phisticated way, such as, exploiting the ontology-based description of
processes in order to dynamically find alternative services as substitutes
for failed services. We also discuss the consequences of these semantic-
enabled approaches and point out required changes for integration in
OWL-S.

Keywords: Semantic Web, Web Services, Recovery, OWL-S.

1 Introduction

The web services (WS) paradigm is widely used and many enterprises deploy
their business processes as web services. Typically, web service-based processes
tend to operate in rapidly changing environments where two main concerns need
to be addressed. First, the business process has to fulfill the goals for which it
was designed. Second, the process must respond to changes in its operating en-
vironment by adapting to them in order to guarantee long-term sustainability.
These two concerns are orthogonal. Current WS and business process standards
focus on the first issue. Constructs for control and data flow specifications are
typically based on some form of process algebra and thus, allow an easy design of
structured processes that are particularly suitable for stable environments. Ex-
ception and recovery mechanisms are used to deal with unusual situations and
changes. Current web service recovery mechanisms are highly inflexible. BPEL
[1], for instance, uses compensation handlers with explicitly defined compen-
sation actions (i.e., service calls). This provides only one solution for recovery
at a particular time. Other possible solutions that might exist are not taken
into account. Since the environment is changing constantly, the availability and
reachability of services may vary over time. With conventional approaches to
recovery and exception handling, it is not possible to adapt to such changes.
� This research was supported in part by Darpa contract FA865006C7606, by AFOSR

FA9550-07-1-0039, and by funding from France Telecom.

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 100–105, 2008.
c© IFIP International Federation for Information Processing 2008

Recovery Mechanisms for Semantic Web Services 101

A compensation containing a non-reachable service, for example, results in an
inconsistent state of the system in the case of a failure, even though other services
could be used as compensation for the failed process.

These shortcomings reveal a need for stronger and more flexible recovery
mechanisms that allow a process to adapt while simultaneously respecting the
design of the original process. Semantic Web Services (SWS) appear to be ideal
for achieving this. The SWS standards introduce means for providing service
specifications with rich semantic annotations that facilitate flexible dynamic
discovery, invocation and composition of services. This paper focuses on how
techniques such as dynamic discovery and composition can be exploited in the
context of recovery and process adaptation. For example, SWS can take ad-
vantage of the dynamic discovery of either equivalent services (as a replace-
ment) or other appropriate services, that may help to recover from a failure
(e.g. for compensation), instead of relying on explicitly specified recovery solu-
tions. In our previous work [2] OWL-S was extended with exception handling
and basic recovery mechanisms. This paper revises recovery techniques intro-
duced previously, and further presents new semantic-enabled mechanisms. We
propose ReplaceByEquivalent and Advanced Back & Forward Recovery actions,
which try to dynamically discover alternatives for erroneous tasks. Next, the
Automatic Compensation technique exploits the semantic information to undo
finished processes.

This paper is organized as follows: in Sect. 2 the existing exception han-
dling and recovery in OWL-S is presented, followed by the introduction of new
semantic-enabled mechanisms in Sect. 3. Next, these approaches and their con-
sequences are discussed in Sect. 4 and related work is summarized in Sect. 5. In
Sect. 6 we conclude and give an outlook on future work.

2 OWL-S and Recovery

OWL-S [3] is a description language for Semantic Web Services, based on OWL
[4], that defines services through three kinds of information: the Service Pro-
file describes what the service does in terms of its capabilities and is used for
discovering and selecting suitable providers; the Process Model specifies how
clients can interact with the service by defining the requester-provider interac-
tion protocol; the Grounding links the Process Model to the specific execution
infrastructure. For exception handling and recovery, the Process Model is of par-
ticular importance. Its elementary unit is an atomic process, which represents
one indivisible operation. Processes are specified by means of their inputs, out-
puts, preconditions, and effects (IOPEs). Atomic processes can be combined into
composite processes by using control constructs (e.g. sequence, split, etc.). All
processes and control constructs must be strictly nested in order to ensure that
every process or control construct has a defined parent.

To support basic fault handling and recovery, the OWL-S Process Model was
extended in [2]. In addition to the IOPEs, every process can define fault han-
dlers, standard event handlers, constraint violation handlers (CV-handlers), and

102 K. Wiesner et al.

compensation (FECCs). Fault handlers are used to respond to standard fail-
ures in the form of an exception event during the execution. The CV-handlers
augment the basic fault handling by allowing a designer to define what situa-
tions during execution are supposed to trigger an erroneous state and how to
recover from it. This is achieved by combining event expressions known from
event algebras for specifying arbitrary event patterns [5] in the condition part
of a CV-Handler, and recovery actions in the action part of a CV-Handler. The
event conditions defined in CV-handlers are treated as hard constraints that lead
to an abnormal execution state. In contrast, event handlers are used to express
soft constraints. If the event condition of an event handler is met, its actions
are processed without changing the execution state. In the compensation block,
actions which are supposed to undo the effects of a process in case of a failure
can be specified.

The following recovery actions were introduced in [2] to enable essential re-
covery in OWL-S:
Compensation: For every process, compensation can be defined. The actions

specified in the compensation are used to undo the effects of the previously
performed process. Compensation can be triggered either by Compensate,
which invokes the compensation of the corresponding process, or by Com-
pensateProcess, which enables to perform compensation for another process.

Retry: Retry simply restarts the same process again (which is especially useful
for communication failures). It can be used in fault and CV-handlers to
restore a normal execution flow after a failure has occurred. It either retries
to execute the corresponding process n-times, or until the specified time
expires (timeout).

Replace: Two replace operations are provided to replace a process by an al-
ternative one which is supposed to achieve the same goal: ReplaceBy simply
replaces the failed process with an alternative one explicitly specified in the
process model. In contrast, ReplaceProcessBy replaces any arbitrary process
with another one, which makes it possible to change the overall workflow.

Skip: The Skip action can be used in all FECC handlers to skip a process that
has become dispensable as long as it has not been started yet.

Terminate: All running activities are stopped and performed tasks on the same
level are undone. Subsequently, the same is done for parent levels. Termi-
nation is realized in two ways. HardTerminate terminates all running proc-
cess without allowing compensation, whereas SoftTerminate compensates
finished processes before terminating.

3 Semantic-Enabled Recovery

In this section, new recovery actions enabled by computer-interpretable descrip-
tions of services are introduced in order to enhance and improve our existing
mechanisms [2]. The following operations distinguish themselves in providing a
flexible and adaptable way to recover from failures. We achieve this by exploiting
mainly existing semantic annotations in OWL-S. The actions either replace or
roll back the process with the help of dynamically discovered services.

Recovery Mechanisms for Semantic Web Services 103

ReplaceByEquivalent: The described Replace action recovers through a re-
placement, either specified in advance or selected by a human agent. We defined
a more flexible operation, ReplaceByEquivalent, which dynamically adapts to the
current situation, by using the information about the service capabilities. The
OWL-S Process Model specifies inputs, outputs, preconditions, and effects, which
we utilize to find an alternative service with the help of existing algorithms for au-
tomatic web service discovery (matchmaking) [6]. Since the replacement service
is not selected in advance but discovered during run-time, the chances of a suc-
cessful recovery and completion of the overall process are substantially increased.
Advanced Back & Forward Recovery: A possible operation for recovery is
the Back & Forward Recovery (BFR). After a failure, first a rollback is performed
for all finished processes on the same level (of the process hierarchy) where the
failure occured (Back phase). If the parent is non-vital for the overall outcome,
the execution can continue in spite of the failure (Forward phase). If the parent is
vital, the Back phase is repeated until the parent is non-vital, so that eventually
Forward can be performed. In the worst case, i.e. when all tasks are vital, a
complete rollback is performed. However, OWL-S does not support such an
operation currently, since all processes are considered to be vital. A parameter
indicating whether a process is Vital/Non-Vital can be easily added, and so
recovery can be neglected for non-vital processes. Independently, we introduced
a variation of the BFR operation, Advanced Back & Forward Recovery (ABFR).
The basic BFR goes back in the process hierarchy until a non-vital parent is
found. The advanced variation of this makes use of the ReplaceByEquivalent in
such a way that for each parent that is vital an alternative service is searched
for. If an appropriate service exists, it is executed as a replacement and normal
execution is resumed. If no replacement is found, ABFR continues just as the
original approach and goes one step higher in the hierarchy. The following pseudo
code demonstrates the ABFR algorithm:

if hasParent(process) = false then
abortExecution

else
compensateSiblings
if parentOf(process) �= vital then

continueExecution
else

successfulReplaced ⇐ ReplaceByEquivalent(process)
if successfulReplaced �= true then

ABFR(parentOf(process))

Automatic Compensation: The definition of the Process in OWL-S contains
information about the effects of a service. This can be exploited to discover an
automatic compensation. If a service with the effects ε need to be compensated
and no compensation has been specified, it is searched for a service with the
effects ε−1 which undoes all changes. In particular, we assume that a service
without effects does not need to be compensated. This simplifies the recovery.

104 K. Wiesner et al.

4 Discussion

Although replacing an erroneous service with a dynamically discovered alterna-
tive by using an operation like ReplaceByEquivalent can significantly increase
the robustness of workflows, it also adds some degree of non-determinism to
it. Unbeknownst to the user, malicious services could be executed. In contrast,
searching for an alternative only in a local, controlled environment (e.g. within
a company’s intranet) would not really exploit the potential of such recovery
operations; consequently, a central pool with trusted services is a possible solu-
tion. The same applies for ABFR as well. Furthermore, the latter poses another
problem. ABFR might go back several steps in the hierarchy before finding a
replacement, which would lead to a substantial change of the original service. In
this case, the user may perform a largely different service than he wanted or the
process designer intended him to run. This, however, can be bypassed by spec-
ifying tasks as replaceable/non-replaceable. As a result, the process designer is
able to ensure that some core processes cannot be replaced. This also facilitates
a way to specify recovery operations in a more general way. Instead of specifying
recovery actions for each process separately, the expressivity of FECC handlers
can be exploited. A CV-handler might associate the ReplaceByEquivalent with
an event expression like ServiceInvocationException∧replaceable, so that each
service that cannot be invoked is automatically replaced.

5 Related Work

The approach introduced in [7], is based on long-lived transactions (LLTs). A
LLT can be broken up into several sub-transactions, which are then executed as
an atomic unit and can be compared to traditional transactions. Only complete
executions are accepted, so some sub-transactions have to be undone in the case
of failures. This is solved by providing a compensation for each of them and
executing those in the reverse order. E.g. WS-BPEL [1] exploits this method for
its error handling. In [8], Greenfield et al. discuss this approach in detail.

Intended especially for distributed transactions, several mechanisms for Web
service transactions have evolved, as Business Transaction Protocol (BTP),
WS-Tx1. These approaches provide protocols enabling a two-phase commit as
in traditional transactions, but also leaving applications in full control of sin-
gle steps. A failure in a sub-transaction does not inevitably lead to an abor-
tion of the actual transaction. In [9], Papazoglou gives an extensive overview.
Curbera et al. [10] suggest a combination of WS-BPEL and WS-Tx. The incor-
poration of both is discussed in [11].

Workflow transaction approaches (such as in [12]) primarily focus on ensuring
a consistent state from a business point of view, i.e. achieving the business goal.
In case of a failure, the execution returns to the most recent consistent state and
tries to continue the execution in order to complete the workflow.
1 WS-Tx (WS-Transaction) includes WS-Coordination, WS-AtomicTransaction, and

WS-BusinessActivity.

Recovery Mechanisms for Semantic Web Services 105

6 Conclusions and Future Work

In this paper we revised current recovery techniques in OWL-S and presented
new mechanisms enabled by the semantic layer. We introduced a new kind of
recovery actions that exploit the semantic annotation of SWS to facilitate dy-
namic discovery of alternative or auxiliary web services. We proposed that se-
mantic web services can be a key technology in achieving reliable and adaptable
service executions. We are curently working on the implementation of semantic-
enabled recovery actions mechanisms in the OWL-S Virtual Machine [13]. We
plan to extend the process specification to support features like (non)-vital as
well as (non)-replaceable. Additionally, we will investigate further possibilities of
semantic-enabled recovery actions.

References

1. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0
(April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

2. Vacuĺın, R., Wiesner, K., Sycara, K.: Exception handling and recovery of semantic
web services. In: The Fourth International Conference on Networking and Services,
IEEE Computer Society, Los Alamitos (2008)

3. The OWL Services Coaltion: Semantic Markup for Web Services (OWL-S),
http://www.daml.org/services/owl-s/1.1/

4. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P., Stein, L., et al.: OWL Web Ontology Language Reference. W3C
Recommendation (February 2004), http://www.w3.org/TR/owl-ref/

5. Vacuĺın, R., Sycara, K.: Specifying and Monitoring Composite Events for Semantic
Web Services. In: The 5th IEEE European Conference on Web Services, IEEE
Computer Society, Los Alamitos (2007)

6. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, inter-
action and composition of Semantic Web services. Web Semantics: Science, Services
and Agents on the World Wide Web 1(1), 27–46 (2003)

7. Garcia-Molina, H., Salem, K.: Sagas. SIGMOD Rec. 16(3), 249–259 (1987)
8. Greenfield, P., Fekete, A., Jang, J., Kuo, D.: Compensation is Not Enough. In:

Proceedings of the 7th International Enterprise Distributed Object Computing
Conference (EDOC) (2003)

9. Papazoglou, M.: Web Services and Business Transactions. World Wide Web 6(1),
49–91 (2003)

10. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S.: The Next Step in
Web Services. Communications of the ACM 46(10), 29–34 (2003)

11. Sauter, P., Melzer, I.: A Comparison of WS-BusinessActivity and BPEL4WS Long-
Running Transaction. In: Kommunikation in Verteilten Systemen (KiVS), ser. In-
formatik Aktuell, pp. 115–125. Springer, Heidelberg (2005)

12. Eder, J., Liebhart, W.: Workflow recovery. In: Proceedings of the First IFCIS
International Conference on Cooperative Information Systems, pp. 124–134 (1996)

13. Paolucci, M., Ankolekar, A., Srinivasan, N., Sycara, K.P.: The DAML-S virtual
machine. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 290–305. Springer, Heidelberg (2003)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.daml.org/services/owl-s/1.1/
http://www.w3.org/TR/owl-ref/

A Multi-stage Approach for Reliable Dynamic
Reconfigurations of Component-Based Systems�

Pierre-Charles David1, Marc Léger2, Hervé Grall1,
Thomas Ledoux1, and Thierry Coupaye2

1 OBASCO Group, EMN / INRIA, Lina
École des Mines de Nantes

4 rue Alfred Kastler
F-44307 Nantes CEDEX 3

2 France Télécom, Recherche & Développement
28, chemin du vieux chêne

F-38243 Meylan

Abstract. In this paper we present an end-to-end solution to define
and execute reliable dynamic reconfigurations of open component-based
systems while guaranteeing their continuity of service. It uses a multi-
stage approach in order to deal with the different kinds of possible errors
in the most appropriate way; in particular, the goal is to detect errors
as early as possible to minimize their impact on the target system. Re-
configurations are expressed in a restricted, domain-specific language in
order to allow different levels of static and dynamic validation, thus de-
tecting errors before executing the reconfiguration where possible. For
errors that can not be detected early (including software and hardware
faults), a runtime environment provides transactional semantics to the
reconfigurations.

1 Introduction

Complex software systems must be modified/maintained during their lifetime,
for example to fix bugs or include new functionalities. It is often not practical –
or even possible – to stop the system in order to perform these changes. Instead,
the changes must be applied dynamically to keep the running system available.

There are two conflicting forces that make evolution especially challenging. On
the one hand, the evolutions that will be applied to a system cannot be precisely
anticipated at the time it is initially built and deployed. This means the system
must be kept open and flexible to accommodate future needs. On the other hand,
modifying production systems that are often business-critical is very risky, and
we need to ensure that these changes will cause the minimum possible disruption,
even though we do not know ahead of time the actual changes that will be
made. In short, we need a way to provide reliable dynamic reconfigurations.
� This work is partially funded by the Selfware RNTL project (http://sardes.
inrialpes.fr/selfware) and the Selfman IST project (http://www.ist-selfman.
org/).

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 106–111, 2008.
c© IFIP International Federation for Information Processing 2008

A Multi-stage Approach for Reliable Dynamic Reconfigurations 107

By reliable we mean: (i) reducing as much as possible the occurrence of errors
(fault prevention), (ii) when errors that could not be prevented actually happen,
minimize the damage they cause to the system (fault tolerance).

This paper introduces a modular validation chain to support reliable dynamic
reconfigurations on top of general-purpose component models like Fractal [1].
The chain is based on a decomposition of the life-cycle of individual reconfig-
urations in multiple stages, from their definition to their actual execution on
the target system. As reconfiguration scripts go through these successive stages,
different techniques are used to “weed out” incorrect reconfigurations and handle
errors that could not be prevented. The different stages of the validation chain
complement each other to offer strong reliability guarantees. At the same time,
the chain stays modular and can be customized to support different tradeoffs
between performance and guarantees depending on the domain.

In the rest of this paper, we first present the overall architecture of our ap-
proach (Sect. 2), detailing the different kinds of errors our validation chain han-
dles thanks to its multi-stage architecture. Sections 3 to 5 then give more details
on each successive stage of the chain. We conclude (Sect. 6) with an overview of
the current status of these different modules and of the future work.

2 Overview of the Validation Chain

The goal of the proposed validation chain is to ensure the reliability of the
dynamic reconfigurations of software architectures (e.g. component replacement,
reconnection of component bindings). It relies on the use of a dynamic component
model that supports unanticipated reconfigurations, typically thanks to reflective
features. In our case we use Fractal [1] for its flexibility and extensibility.

The main idea behind our proposal is to handle the different kinds of errors at
different points in the life-cycle of a reconfiguration. Accordingly, the validation
chain is organized with three main stages as illustrated in figure 1, each stage
corresponding to a different step in the life-cycle of the scripts that describe the
reconfigurations to be executed. At each stage, if an error is detected, the re-
configuration is immediately rejected. Hence the whole chain acts as a sequence
of increasingly specific sieves that scripts must pass through, from basic sanity
checks to a full-blown managed execution of the reconfigurations as transactions.

Loading. First, the specification of a reconfiguration is loaded into the validation
chain, in the form of a reconfiguration script. Such a script can be executed many
times in its lifetime, with different target architectures, but it is loaded only once.
For example, a generic component replacement script can be reused with differ-
ent parameters each time a component must be updated to a new version. At
this time, the possible target architecture are only specified by the architecture
model, which defines some rules that the architectures under consideration sat-
isfy. With these informations, the possible validations include various levels of
static analyses filtering out reconfiguration scripts that could cause errors when
applied to a concrete architecture.

108 P.-C. David et al.

Fig. 1. The validation chain’s architecture

Invocation. After loading, a user may want to actually execute the reconfigu-
ration on a particular target architecture. Some additional validations can now
be performed: this stage filters out scripts that are incompatible with the given
target architecture.

Execution. Finally, the reconfiguration is executed on the target architecture.
If the previous steps have been precise enough, most erroneous reconfigurations
have already been rejected at this point. However, some kinds of errors are
either impossible to predict (e.g. hardware faults) or too costly to detect. To
handle these errors, the execution stage uses a runtime environment providing
transactional properties to reconfigurations in the Fractal model. Although it
can actually handle all the errors detected by earlier stages, this choice may
make the architecture not available during a too long time.

The different stages of the validation chain work together providing an inte-
grated whole. At the same time, the chain stays modular, and some of the stages
can be disabled or replaced. As the different analysis techniques have different
costs, the validation chain can be customized depending on the target architec-
tures: critical systems will require more complex static analyses in the earlier
stages, and may even include a test run on a replica system whereas the cost
of these steps may be redhibitory in other contexts. The rest of the paper gives
more details on each of the successive chain stages.

3 Static Analysis with Respect to the Architecture Model

The first stage in the validation chain loads the source code of the reconfiguration
script into the chain. Its goal is to verify the validity of the reconfiguration with
respect to the underlying architecture model. The component model defines some
rules to be satisfied by the architectures under consideration. At this point, the
actual architectures to which the script will be applied are unknown.

The reconfiguration scripts are written in a domain-specific language named
FScript [2] that we have defined for this purpose. This language not only allows
reconfigurations to be easily expressed, but also ensures some safety properties:
for instance, any well-formed script terminates.

A Multi-stage Approach for Reliable Dynamic Reconfigurations 109

When a script is well-formed, a semantic analysis introduces an axiomatic
definition of the script execution. This analysis is parameterized by a selection
of the rules of the architecture model: this allows us to easily support variants,
at the infrastructure or application levels, like different architectural styles. Note
that some rules can be discarded because they are too costly to analyze. The
analysis defines Hoare’s correctness formulas {P}S{Q} where S is the script and
P and Q are properties describing the architecture to be reconfigured (expressed
in first-order logic). Such a formula means that any architecture satisfying the
precondition P will satisfy the postcondition Q after the completion of the script
S. The aim of the semantic analysis is to determine a precondition P that does
not lead to an error state where the architecture violates some invariant rules
under consideration: only the architectures that satisfy the precondition P will
be reconfigured by the script. Therefore, if the precondition P is false, it means
that the script is not useful according to the analysis and should be rejected.
Otherwise, the script is considered as potentially valid, and passed to the next
stage of the validation chain along with the computed precondition. Note that the
semantic analysis can be more or less precise: the precondition P is sufficient to
ensure the absence of errors with respect to the selected rules, but not necessary.

4 Validation with Respect to the Target Architecture

The second stage in the validation chain is triggered each time the user requests
the invocation of a reconfiguration script by giving a target architecture and
actual parameters. This stage performs additional validations thanks to this
information, but without actually modifying the target architecture.

At this point, the script has already passed the first stage of the chain, and has
a pre-condition associated to it. The first step is thus a simple compatibility check,
which consists in evaluating the pre-condition on the target architecture and the
actual parameters. This can be done easily, and only requires to introspect the
target architecture, without modifications.

If the compatibility check has succeeded, an optional second step can be in-
cluded, which consists in a simulation of the script’s execution. This step uses
a virtual implementation of the target architecture, on which the reconfigura-
tion script is executed using the script interpreter. The virtual architecture is
initialized with the initial state of the target system, but implements “copy-on-
write” semantics: operations are applied to the virtual copy, and do not modify
the actual target system. If any of the component model invariant rules of the
architectural model are violated during the simulation, the invocation is rejected.

One advantage of the simulation is that it can be more precise (and thus can
catch more errors) that the static analyses, which may be restricted by a selec-
tion of the invariant rules to be preserved. Also, by instrumenting the virtual
architecture to be reconfigured, it can generate the exact trace of the reconfigu-
ration performed by the script, which can be “replayed” with very little overhead
to reproduce its effect on the actual target system [3]. The only drawback is that
this step can increase the latency of the reconfiguration.

110 P.-C. David et al.

5 Execution of Reconfigurations as Transactions

The final stage of the chain is the actual application of the reconfiguration script
on the target architecture. Depending on how the previous stage was config-
ured, it uses either a compiled form of the script, or the specialized trace of
reconfiguration operations that was generated during the simulation.

Because the overall objective of the validation chain is to guarantee the re-
liability of the reconfiguration, this step must either apply the complete recon-
figuration script without errors, or, in case of errors, restore the system to the
last consistent state before the execution of the script by rollbacking the failed
reconfiguration: it must be fault tolerant. The failures that happen during the
actual execution of the reconfiguration include software failures (e.g. violation
of the architecture model) that were not detected earlier, and some errors that
are fundamentally impossible to predict (e.g. hardware crashes). In all cases, the
resulting architecture must be in a consistent state according to the definition
of the underlying architecture model.

These objectives call for the use of transaction management techniques, as
they closely match the standard ACID properties (Atomicity, Consistency, Isola-
tion, Durability) of transactions in distributed computing [4]. In order to execute
reconfiguration scripts inside global transactions with automatic demarcation,
we use an extended version of the Fractal component model [5], which provides
transactional semantics for Fractal architectures. Therefore, reconfigurations can
benefit from ACID properties to support concurrency, recovery, and to guarantee
system consistency.

6 Conclusion and Future Work

The objective of this work is to make runtime reconfigurations of open software
architectures reliable while maximizing their availability. We specially target
reflexive component-based architectures for their suitable adaptability property,
as exemplified by the use of the Fractal model in our current implementation.
Our solution relies on a multi-stage validation chain with two main dependability
methods: fault prevention and fault tolerance. Fault prevention notably includes
the use of static analysis on a dedicated reconfiguration language in order to
detect invalid reconfigurations with respect to the architecture model, and an
additional simulation stage on the target architecture. Fault-tolerance is ensured
by a transactional runtime for the actual execution of reconfigurations.

Although several component models support open dynamic reconfigurations,
they do no take into account the reliability of reconfigurations. On the contrary,
most work on reliability and validation for component-based architectures deal
with Architecture Description Languages [6,7] only include static validations and
do not support unanticipated reconfigurations. Recent component models, like
FORMAware [8] and Plastik [9], rely on reflexive architectures to allow unan-
ticipated reconfigurations while supporting some kinds of guarantees checked
at runtime. Our work differs in that we provide a multi-stage architecture that

A Multi-stage Approach for Reliable Dynamic Reconfigurations 111

integrates different complementary validation techniques in a consistent whole.
Depending on the domain requirements, the focus of the validation chain can be
put on the static validation, the controlled execution, or both, for instance for
critical systems.

Currently the overall architecture of the validation chain is in place, and the
whole system is usable although some of the individual stages are not yet com-
plete: the simulation and execution of reconfiguration programs is fully func-
tional, including transactional guarantees. Our current focus is on the earlier
steps, and in particular the definition and implementation of the static analysis
of reconfiguration scripts, which requires a formal definition of both the FScript
language and the Fractal model. Once we have a fully implemented validation
chain for Fractal, we plan to extend it to support other component models.

References

1. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal
Component Model and its Support in Java. Software Practice and Experience, spe-
cial issue on Experiences with Auto-adaptive and Reconfigurable Systems 36(11-12),
1257–1284 (2006)

2. David, P.C., Ledoux, T.: Safe dynamic reconfigurations of Fractal architectures with
FScript. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, Springer, Heidelberg
(2006)

3. Polakovic, J., Mazaré, S., Stefani, J.B., David, P.C.: Experience with implementing
safe reconfigurations in component-based embedded systems. In: Schmidt, H.W.,
Crnković, I., Heineman, G.T., Stafford, J.A. (eds.) CBSE 2007. LNCS, vol. 4608,
Springer, Heidelberg (2007)

4. Traiger, I.L., Gray, J., Galtieri, C.A., Lindsay, B.G.: Transactions and consistency
in distributed database systems. ACM Trans. Database Syst. 7(3), 323–342 (1982)

5. Léger, M., Ledoux, T., Coupaye, T.: Reliable dynamic reconfigurations in the Fractal
component model. In: Proceedings of the 6th workshop on Adaptive and reflective
middleware (ARM 2007), p. 6. ACM, New York (2007)

6. Allen, R.J.: A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon University Technical Report Number: CMU-CS-97-144 (May 1997)

7. Medvidovic, N., Oreizy, P., Robbins, J.E., Taylor, R.N.: Using object-oriented typ-
ing to support architectural design in the C2 style. In: Proceedings of the ACM
SIGSOFT 1996 Fourth Symposium on the Foundations of Software Engineering,
San Francisco, CA, USA, ACM SIGSOFT, October 1996, pp. 24–32 (1996)

8. Moreira, R.S., Blair, G.S., Carrapatoso, E.: Supporting adaptable distributed sys-
tems with FORMAware. In: ICDCSW 2004: Proceedings of the 24th International
Conference on Distributed Computing Systems Workshops, Washington, DC, USA,
pp. 320–325. IEEE Computer Society Press, Los Alamitos (2004)

9. Batista, T., Joolia, A., Coulson, G.: Managing dynamic reconfiguration in
component-based systems. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS,
vol. 3527, Springer, Heidelberg (2005)

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 112–125, 2008.
© IFIP International Federation for Information Processing 2008

Virtual Overlays: An Approach to the Management of
Competing or Collaborating Overlay Structures

Paul M. Okanda1, Sebastian Steinhauer2, and Gordon Blair1

1 Next Generation Middleware Group, Computing Department,
InfoLab21, Lancaster University, Lancaster, LA1 4WA, UK

{okanda,gordon}@comp.lancs.ac.uk
2 Business User Imagineering, SAP Labs, LLC,

Palo Alto, CA, USA
sebastian.steinhauer@sap.com

Abstract. Overlay networks are a technique whereby application developers
create virtual customized networks on top of physical networks. Recent imple-
mentations of peer-to-peer applications such as file sharing and VoIP have in-
creasingly meant that overlay networks have almost become ubiquitous. As a
result, future overlay networks will increasingly coexist on the same node. A
number of middleware frameworks such as GRIDKIT [1], P2 [2] and ODIN-S
[3] currently offer support for the co-existence of multiple overlay networks.
However, co-existing overlay networks interfere with each other’s performance
either through competition for resources or the lack of collaboration between
them. This paper introduces an approach called virtual overlays which manages
competition and collaboration between co-existing overlay networks in a way
that is expressive, flexible, configurable and dynamically adaptable.

Keywords: Overlay Network, Virtual Overlay, Middleware.

1 Introduction

An overlay network can be seen as an application level network layer or partial network
stack which represents a virtual network. This virtual network is realized as a composi-
tion of nodes and logical links abstracting from an underlying existing network. The
main motivation behind overlay networks is the provision of more tailored application
services to support applications in different domains e.g. multimedia file sharing, peer-
to-peer networks etc. Overlay networks have gained widespread utilization in recent
years as a way through which services offered by the underlying physical network can
be tailored to better support the requirements of applications. Applications such as mul-
timedia file sharing and Virtual Private Networks (VPNs) have proven that overlay
networks provide a powerful and efficient solution for specific problems, e.g. security
and content distribution.

The success of current overlay networks e.g. Chord [5], SCRIBE [6] and Pastry [7]
has meant that future trends will result in nodes that run different distributed applica-
tions hosting multiple overlays at a time. This is bound to introduce competition for

 An Approach to the Management of Competing or Collaborating Overlay Structures 113

local resources such as CPU time, memory consumption and network resources such
as bandwidth. There is therefore a need for a framework that resolves competition for
local and network resources, manages collaboration between two or more overlay
networks and, creates a higher level of abstraction that provides developers with bet-
ter control over the management of resource conflicts and collaboration between over-
lay networks.

We propose the use of virtual overlays as a means through which the strengths of
multiple overlapping overlay networks can be combined to not only efficiently re-
solve conflicts between overlay networks but also manage competition between them
and support their collaboration in a flexible, adaptive and configurable way.

2 Background on Overlays

2.1 Definition of Network Overlays

An overlay network can be defined as an application level network layer or partial
network stack which represents a virtual network. This virtual network is realized as a
composition of nodes and logical links that are an abstraction from an underlying
existing network. The main motivation behind the implementation of overlays is to
provide more application-specific or tailored network services which are not provided
by the underlying network. The advantages of overlay networks are pointed out in
Aberer et al. [4] thus:

“In principle, distributed application services could also use directly the physical
networking layer for managing their resources, but using an overlay network has
the advantage of supporting application specific identifiers and semantic routing,
and offers the possibility to provide additional, generic services for supporting
network maintenance, authentication, trust, etc., all of which would be very hard
to integrate into and support at the networking layer.”

This general idea of overlay networks is well known and has been shown to work
well. Transmitting information by sending telegraphs on top of a circuit switched
network can be seen as a historic example. Dial-up connections between computers
and bulletin board systems are an example that is close to the type of overlay that is
the subject of this research paper. Modern overlay networks are a critical part of dis-
tributed applications. For instance peer-to-peer applications use overlay technologies
to create virtual networks as an abstraction from heterogeneous underlying networks,
Virtual Private Networks (VPNs) add authentication and encryption to messages sent
through them, which often cannot be provided by the underlying networks while peer-
to-peer applications are ubiquitous and are used broadly.

Current software systems that utilize overlay technologies, e.g. Chord [5], SCRIBE
[6], or Pastry [7], usually implement a specific well known and well defined overlay
routing mechanism and a corresponding topology. These virtual networks act like
classic, message based, networks on top of underlying networks. They can be used in
a stacked manner, but they keep their basic topology. Hence if an overlay network

114 P.M. Okanda, S. Steinhauer, and G. Blair

layer is designed as a ring network it maintains this structure when stacked with other
overlay networks.

2.2 Why Virtual Overlays?

Current overlay networks have been shown to provide software engineers with high
levels of abstraction at the cost of fine grained control on the message transmission. The
wide adoption of overlay technologies results in co-existing implementations executing
in nodes, e.g. the deployment of a VPN and a peer-to-peer file sharing application on a
single computer. The new concept presented in this paper aims to provide an approach
for controlling and orchestrating multiple coexistent overlay networks. In order to ad-
dress the requirement mentioned in the introduction, virtual overlays provide a technol-
ogy that can be used to a) resolve resource conflicts, e.g. competition for memory
between an application specific implementation of a multicast overlay network and an
unreliable transmission overlay network, b) manage collaboration between coexisting
overlay networks e.g. between an overlay providing reliable transmission and an overlay
providing multicast without forcing developers to give up the advantages of application-
specific overlays and, c) provide a higher-level abstraction that gives developers the
ability to configure the behaviour of overlays at a fine grained level, i.e. on a per mes-
sage basis. This fine-grained per-message manipulation of behaviour implies that an
overlay’s behaviour is not only dependent on its static forwarding mechanism but also
on the message which is passed. This also implies that technologies which are usually
used on a packet level within the ISO/OSI layers can be used to orchestrate overlay
networks.

As will be seen in the next section, the focus of the design and implementation of
the proof-of-concept system is on the manipulation of message routing in overlay
networks at a finer level of granularity and in a more flexible way, without having a
significant negative impact on understandability or system performance.

3 Design and Implementation of the Virtual Overlay

In this section, we describe our design of a virtual overlay by presenting a background
on GRIDKIT and demonstrating how the design is realized on top of the GRIDKIT
middleware framework. Crucially, the goal is to provide an approach that manages
competition and collaboration between multiple overlay structures.

3.1 Background on GRIDKIT

GRIDKIT is a middleware solution whose aim is to provide support for the develop-
ment of complex distributed systems. It can be used to develop a range of approaches
some of which are service-oriented. In order to provide an array of interaction types,
GRIDKIT provides different plug-able overlays at different levels of abstraction. The
set of services provided by the GRIDKIT middleware for grid environments consists
of service bindings, resource discovery, resource management and security. All of

 An Approach to the Management of Competing or Collaborating Overlay Structures 115

these can be combined with the communication layer realized by the GRIDKIT Over-
lay Framework [1]. GRIDKIT addresses the common challenges of middleware sys-
tems by providing developers with the possibility to interconnect overlays in different
ways. In their paper ‘GRIDKIT: Pluggable Overlay Networks for Grid Computing’,
Grace et al. [1] summarize the main goal of the GRIDKIT framework as follows:

“The goal of our research in this area is to develop ways of building fully
customizable, extensible, and evolvable overlays by factoring out generic tech-
niques and protocols (e.g., large-scale neighbor discovery, and network capabil-
ity discovery techniques), and enabling these to be composed, extended and
dynamically reconfigured under the auspices of a well - defined [component
frameworks].”

As described above, overlay networks can be used to create functionality on top of
underlying networks. In GRIDKIT, the developer is given the freedom to combine
different overlay networks or even components of different overlay networks to create
custom overlay networks. These custom overlay networks are created by intercon-
necting OpenCOMJ [1] components and component frameworks (CFs). This provides
software developers with the tools to create custom interaction types based on pre-
existing building blocks. This approach gives software architects more flexibility
during the design of their applications [9], [1]. As described above, every overlay
consists of OpenCOMJ components [1]. As shown in Figure 1 below, an overlay has
to control its topology and provide its forwarding technique. Since the topology man-
agement and the forwarding are based on shared information, a third component is
used to provide state information.

Fig. 1. An Architecture for a GRIDKIT Overlay

116 P.M. Okanda, S. Steinhauer, and G. Blair

Each overlay layer needs to be connected to an IDeliver interface and provides
an IDeliver interface. This interface is used in the GRIDKIT framework to pass
messages between layers of stacked overlays. An integer value is used to identify the
overlay class that a message is passed to. The IDeliver interface is used to pass mes-
sages upwards through the overlay stack. Each overlay also provides and consumes at
least one IForward interface. In contrast to IDeliver, the IForward interface is
used to pass messages downwards through the overlay stack. High level control func-
tionality is accessed using the IControl interface as it can be used to join and leave
overlay networks.

3.2 Extensions on GRIDKIT to Support Virtual Overlays

The system is implemented as part of GRIDKIT which features support for the co-
existence of overlay networks.

Fig. 2. An Architecture for a Virtual Overlay built on an Overlay

As shown in Figure 2 above, a virtual overlay component intercepts all messages
sent, received or forwarded by native overlay networks. Depending on the content of
the messages and the functions implemented by the plugins and the rule set deployed
by the virtual overlay, these intercepted messages may or may not be re-injected into
the native overlay networks. Note that this effectively equates to a meta-level ap-
proach to the management of overlays (meta-overlays) and indeed this is implemented
using GRIDKIT’s underlying reflective mechanisms. Below, we describe the funda-
mental constituents of the virtual overlay.

Message Tagging and Rule Engine. The general concept of tagging messages was
inspired by IP Filters [12] and Conoboy et al.’s [11] work on the rule language and its

 An Approach to the Management of Competing or Collaborating Overlay Structures 117

influence on packets being processed by the packet filter. All messages are tagged by
all applicable rules; the process of tagging does not alter the message itself but adds a
flag to the message for each applied rule. After adding all applicable flags to the mes-
sage, a set of filters is used to alter the message according to the flags the message
was tagged with. To ensure consistency with the idea of an interchangeable rule en-
gines, the central requirement for a rule engine in the context of this project is its full
compliance to JSR 94 [13]. This specification defines the general interfaces a rule
engine needs to implement without specifying a rule definition language or a specific
technology for the rule engine. Since the main differences for rule engines in this
context are the technology and the language used to define the rules, the number of
candidates for the virtual overlay’s implementation was fairly limited. The following
criteria were used during the decision making process: complexity, license, rule lan-
guage, community, and documentation. Amongst the rule engines evaluated were Jess
[14], JBoss Rules [15] and Hammurapi Rules [16]. Although the Hammurapi Rules
development community is relatively small, its lightweight implementation made it
the best choice for a prototype system.

Plugins. The intercepted messages are tagged according to a rule set and based on the
tagging of each message, control plugins manipulate the message. Finally the message
is injected into or sent via a native overlay. Each plugin checks whether a message
contains specific tags and if the message does, it performs some action, otherwise the
plugin executes its default action.

Crucially, the virtual overlay does not only intercept messages within the existing
overlays but is in itself an overlay which can be stacked on top of existing overlays. It
can receive messages from other overlays and send messages using the default set of
overlay interfaces. In order to offer support for the orchestration of overlays, the sys-
tem’s overlay components implement an interception and injection interface.

Figure 3 below illustrates a plugin that checks whether a message contains specific
tags. If the message does, it performs some action, otherwise the plugin executes its
default action.

Fig. 3. Java Source Code for a Sample Filter Plugin

118 P.M. Okanda, S. Steinhauer, and G. Blair

The method processMessage checks if a message was passed to it, and it was
it checks for the tag DROP and the absence of the tag PASS. If a DROP tag is found
and not a PASS tag the message is set to null. If a PASS tag is found or no DROP tag
is found the message is not manipulated. In either case, the message or null is passed
to the next plugin by calling the parent method processMessage. This ensures
that the entire chain of plugins is processed and the default action is carried out. Cases
which require to process all messages can be imagined hence it is required that the
messages are passed down the chain even if they are null. The inherited class
GenericPlugin also implements the entire OpenCOMJ functionality. The devel-
opment of a plugin only requires overloading the processMessage function - if a
behavior different from just passing the message is required.

The tagging engine in this prototype was developed as a façade around the rule en-
gine to tag messages. In order to show that the tagging of messages with a following
processing of the messages based on their tags is an efficient way of manipulating
messages on middleware level a small rule set was defined. Figure 4 below shows
how a rule can be created by implementing the infer method in a class inheriting from
Rule.

Fig. 4. A sample rule for Hammurapi Rules

The next section details a set of experiments that were developed over the GRID-
KIT overlay framework.

4 Experimental Evaluation

This section details an experimental evaluation of the implementation of the design
discussed in section 3.2 above. To facilitate the experiments, two representative and
existing overlay networks are used to prove the concept of the described system; Tree
Building Control Protocol (TBCP) [8] and Chord [5]. TBCP is used to span a bal-
anced application level multicast tree. While Chord represents a distributed hash table
(DHT)-based overlay ring network. Chord is a well known overlay network while
TBCP is a clean realization of an application level multicast tree. Implementations of
both overlay networks are part of the GRIDKIT framework.

From our implementation of the design detailed in section 3 above, we set up two
sets of incremental experiments that focused on validating the architecture described in

 An Approach to the Management of Competing or Collaborating Overlay Structures 119

the previous section. As a first step, the general concept was verified by implementing a
sample application that could be used to show major aspects of the proposed system
and its basic performance metrics. Since overlay networks are not only defined by the
forwarding technique that they implement but also by their topology and their state,
the components maintaining and realizing their topology and state are represented in
the context of virtual overlay networks. The second set of experiments aims to show a
non-static (dynamic) implementation of meta-routing. It presents a prototype devel-
oped for inter-overlay routing based on self-configuring routes.

4.1 A Basic Middleware Firewall

Overview
The proof-of-concept implementation presented in this sub-section shows the realiza-
tion of interception of messages within an overlay and reinjection of messages in the
very same overlay. Crucially, its aim is to a) illustrate the internals of a minimal con-
figuration of a virtual overlay and b) evaluate the performance overhead that is intro-
duced by the implementation of a virtual overlay.

Implementation
As detailed below, this experiment implements the three constituents of a virtual over-
lay described in section 3 above. It involves a selection and implementation of a mes-
sage injection mechanism, an implementation of a message tagging technology and an
implementation of a rule engine.

Message Injection. The fundamental concept of the proposed architecture is message
interception and message injection. To prove this concept, a test application compris-
ing two parts, a sender and a receiver was developed. Both components intercept
messages before sending or receiving them. The intercepted messages get manipu-
lated and then re-injected into (other or the same) overlay networks. In the initial
stages of the experiment, a TBCP tree containing exactly two nodes was created, one
node being the sender while the second node acted as a receiver. The sample applica-
tion used a custom Log4J[10] appender to published messages to a multicast tree.
Since broadcast messages were filtered within the sender and receiver in a multicast
application that was extended to provide support for the interception of inbound and
outbound messages, this could be considered a simplified firewall.

Message Tagging. In the first prototype implementation, the filter basically drops or
passes messages according to their tags. To gain higher flexibility, the plugin process-
ing the tags has to define a default behavior in case no matching tags can be found or
in case conflicting tags are attached to a message. The mechanism of using a separate
tagging engine which does not define the behavior of the stack creates flexibility in
choosing a rule engine for a particular task, or to meet specific environmental con-
straints. It also allows the use of precompiled sets of tags to be attached to precom-
piled messages, which might be relevant in throughput-critical systems.

120 P.M. Okanda, S. Steinhauer, and G. Blair

Rule Engine. As illustrated in Figure 5 below, the TBCP Overlay was extended to
provide the interface IOverlayCallback. It also provides intercepted messages to
the Virtual Overlay component using the IIntercept interface. The Virtual Over-
lay component uses a Tagging Engine component to wrap the rule engine via the
interface ITag and forwards tagged messages to a chain of plugins using the
IPlugin interface. The diagram below shows the components used. The chain of
plugins only consists of two generic empty plugins as proof of the concept of the
plugin chain as well as the DROPPlugin. The chain of plugins is realized using the
IPlugin interface that each plugin has to implement.

Fig. 5. Major components of the first prototype

It is also implemented by the Virtual Overlay component which re-injects mes-
sages into the TBCP Overlay after they have completed the entire chain. The proto-
type’s major components are briefly described below.

The Tagging Engine. This rule tags all messages containing the word “DEBUG”
with the tag DROP. A similar rule is used to tag all message having the word “FA-
TAL” in them with the tag PASS. All other messages are not tagged at all. The rule
engine automatically loads rules listed in a rule set definition file. The Tagging
Engine also checks the rule set definition file for updates before tagging a message.
This very simple approach allows runtime manipulation of the deployed rule set and
was implemented to show that runtime adaptability can be achieved using the pro-
posed system.

 An Approach to the Management of Competing or Collaborating Overlay Structures 121

Evaluation

To evaluate the prototype, a basic system creating log messages was used. The genera-
tor sends two sets of 1000 numbered messages with priorities iterating over {DEBUG,
INFO, WARN, ERROR, FATAL}. A small receiver application logged the message,
including the time of creation, as well as the time of reception to a file. To provide re-
producible and facilitate comparison of results without the need to consider time syn-
chronization, the receiving and sending application executed on the same computer. All
involved Java Virtual Machines (JVMs) were running with normal priorities as user
applications. Two virtual machines were used to span a tree containing one root node
and one non-root node. All measurements were carried out free of external network
interruptions, only the loopback device was used. Two measurements were taken; one
showing the native GRIDKIT framework delivering the messages without any filtering
or tagging and one showing the performance of the GRIDKIT framework using
the prototype presented in this section. Table 1 below shows the delay measured per
message of the second set of 1000 sent messages.

Table 1. Quantifying the Overhead of Virtual Overlays

Measurement Mean Msg. Delay
 in s

Std Deviation
 in s (%)

No. of Msgs.
 Sent

No. of Msgs.
Received (%)

GRIDKIT &
Prototype

0.058 0.013 (22) 1000 800 (80)

GRIDKIT 0.055 0.013 (23) 1000 1000 (100)

It is evident that the virtual overlay firewall performed its intended purpose since
the expected number of messages (200 or 20%) did not reach the receiving node in
the test using the prototype implementation. It also shows that all messages send us-
ing the native GRIDKIT implementation arrived at the identical receiving node. The
difference between the average message delay when using the virtual overlay com-
pared to not using it is around 0.003s. The standard deviation calculated for both
measures is 13ms. In all instances, the measured delay from all messages sent using
the altered framework was smaller than delays measured for the pure GRIDKIT im-
plementation. This might indicate that the overhead added by the prototype imple-
mentation is smaller than other factors interfering with the message transmission. The
main suspected factors are the virtual machine internal thread management as well as
the process scheduling of the operating system.

This experiment shows a sample application that realizes the basic architecture of a
virtual overlay. The performance metrics detailed above prove that the configurability
and expressiveness that is achievable using the proposed system makes the overhead
insignificant. The next two experiments build on the implementation presented above
to present more complex scenarios.

4.2 An Enhanced Virtual Overlay

Overview
This experiment aims at showing that our approach is not limited to message filtering
or static routes but that virtual overlays can use their own state and a meta-routing

122 P.M. Okanda, S. Steinhauer, and G. Blair

algorithm to reproduce GRIDKIT’s Control, Forward and State overlay pattern intro-
duced in section 3.

As illustrated in Figure 6 below, the namespace spanned by a Chord ring is used to
globally address messages while messages sent to nodes in the Chord ring are actually
routed via appropriate direct routes, which are in this example smaller Chord rings
(with only 2 nodes).

Fig. 6. Illustration of TBCP Trees and Chord Ring Setup

This gives developers the flexibility to create virtual overlays which do not route
messages within the actual overlays but between multiple overlays.

Implementation
As shown in Figure 7 below, central to achieving this experiment’s aim is the Routing
Packet Overlay which uses a time controlled trigger to send information about each
node it is deployed on in intervals. If the trigger fires, the Routing Packet Overlay
obtains a list of all local Chord endpoints created by the Multi CHORD Overlay com-
ponent. It then creates a message containing the global identifier (defined for the
global namespace Chord ring) of the current node as well as the name and local iden-
tifier of the node in each Chord Overlay. The packet is sent via the local network
named within the message. Thus the nodes in each local network can route messages
correctly as they get to ‘know’ the global identifiers of the nodes on that network.
This data is stored and managed in Routing Table.

The Multi CHORD Overlay component was developed to provide a unified inter-
face to a multitude of Chord overlay networks. The component uses a network name
to distinguish between the Chord overlay networks. In order to create a prototype
which shows easily verifiable behavior, the Chord framework implementation was
altered to support direct definition of node IDs.

 An Approach to the Management of Competing or Collaborating Overlay Structures 123

Fig. 7. Major components in the scenario "Enhanced Virtual Overlay"

Figure 7 above shows three major components developed as part of this prototype
(Routing Packet Overlay, Routing Table and Routing Plugin).

Evaluation

This scenario shows how the given components work together to route messages in a
multi-overlay environment through collaborative message routing between nodes. The
evaluation scenario is based on an overlay network environment with two nodes being
part of two different Chord networks. Since the overhead of creating and maintaining
the routing data within the hybrid network significantly influences the performance, it
is not quantified. A scenario to demonstrate the effectiveness of the proposed system
in an expressive manner would have required a bigger network and setup work be-
yond the scope of this paper.

5 Related Work

In Cooper et al.’s paper ‘Trading Off Resources between overlapping Overlays’ [3],
an architecture called ODIN-S is introduced which has a focus on different methods
to mediate resource usage between coexisting overlay networks. It uses a set of ingo-
ing and outgoing filter to intercept messages on a shared communication layer. In this

124 P.M. Okanda, S. Steinhauer, and G. Blair

approach overlay networks are not stand-alone entities but plugins running on top of a
common transport system. This transport system communicates with a set of filters in
order to control throughput and order of messages being sent through the overlay
network. ODIN-S also assumes a homogeneous deployment of ODIN-S instances
since it uses specific receiver originated messages to control the throughput of mes-
sages on sending nodes. In general the paper shows that manipulation of messages on
their entry point into the overlay environment can be used to achieve QoS through the
control of resource conflicts between coexisting overlay networks. Some generic
ideas for the design of the proposed system were inspired by a project called P2 [2].
This project makes use of a declarative language to define overlays on top of a shared
transport layer. The work stresses that declarative approaches can be efficient and
expressive for describing the behavior of overlay networks. The novelty of the con-
cept of virtual overlays, as detailed in this paper is that it addresses the more general
management of collaboration and competition between multiple overlay structures.

6 Conclusion

This paper has presented an argument for the use of virtual overlays as a technique by
which competition and collaboration between co-existing overlay network structures
can be managed. Although a number of middleware frameworks e.g. GRIDKIT [1]
and P2 [2] currently offer support for the co-existence of overlay networks, co-
existing overlay networks inevitably interfere with each other’s performance either
through competition for resources or the lack of collaboration between them. More
specifically, the paper has provided a high level overview of a middleware design
which uses a meta-overlay to combine the strengths of multiple overlapping overlays
(hybrid overlay networks) with a strong focus on dynamic adaptability, flexibility and
configurability. We therefore argue that the use of virtual overlays to resolve resource
conflicts, optimize performance via collaboration between multiple overlay structures
and provide a higher-level abstraction that gives developers control over the overlay
networks they deploy is the way forward in the design of next generation middleware.
Areas of future work include research into deployment of multiple rule sets, develop-
ment of a custom rule engine and rule language, self-configuration of rule sets and
performance metrics in a large scale deployment environment.

References

1. Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung, W.K., Cai, W., et al.: GRIDKIT:
Pluggable Overlay Networks for Grid Computing. In: Proceedings of Distributed Objects
and Applications (DOA), Cyprus (2004)

2. Loo, B.T., Condie, T., Hellerstein, H. M., Maniatis, P.: Implementing Declarative Over-
lays. In: Proceedings of ACM Symposium on Operating System Principles 2005 (SOSP),
Brighton, UK (2005)

3. Cooper, F., B.: Trading Off Resources between overlapping Overlays. In: Proceedings of
the ACM/IFIP/USENIX 7th Middleware Conference, Melbourne, Australia (2006)

 An Approach to the Management of Competing or Collaborating Overlay Structures 125

4. Aberer, K., Alima, L.: The essence of P2P: A Reference Architecture for Overlay Net-
works. In: Proceedings of the 5th IEEE Conference on Peer-to-Peer Computing, Konstanz,
Germany (2005)

5. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrsihnan, H.: Chord: A Scalable Peer-
to-Peer Lookup Service for Internet Applications. In: Proceedings of the ACM SIGCOMM
Conference, San Diego, CA, USA (2001)

6. Davis, A.M.: Operational Prototyping: A New Development Approach. IEEE Soft-
ware 9(5), 70–78 (1992)

7. Rowstron, A., Druschel, P.: Pastry: Scalable Decentralized Object Location and Routing
for Large Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

8. Mathy, L., Canonico, R., Hutchinson, D.: An Overlay Tree building Control Protocol. In:
Proceedings of the 3rd International Workshop on Networked Group Communication,
NGC, London (2001)

9. Coulson, G., Blair, G., Grace, P., Joolia, A.: A Component Model for Building Systems
Software. In: Proceedings of IASTED Software Engineering and Applications (SEA),
Cambridge, MA, USA (2004)

10. The Log4J Appender, http://logging.apache.org/log4j/docs/index.html
11. Conoboy, B., Fichtner, E.: IP Filter Based Firewalls HOWTO Tutorial (2002), http://

www.obfuscation.org/ipf
12. IP Filter ver. 4.1.27, http://coombs.anu.edu.au/~avalon/
13. Toussaint, A. (ed.): Java Rule Engine API: JSR-94. Java Community Press (September

2003)
14. Friedman-Hill, E.: Jess Information, the Jess Engine for the Java Platform, http://

www.jessrules.com/jess/index.shtml
15. JBoss: JBoss Rules Documentation Library, jboss.org, http://labs.jboss.com/

jbossrules/docs
16. Hammurapi Group: Hammurapi Rules, http://www.hammurapi.biz/hammurapi-

biz/ef/xmenu/products/hammurapirules/index.html

Tree-Based Analysis of Mesh Overlays for

Peer-to-Peer Streaming

Bartosz Biskupski1, Marc Schiely2, Pascal Felber2, and René Meier1

1 Trinity College Dublin, Ireland
2 University of Neuchâtel, Switzerland

Abstract. Mesh-based P2P streaming approaches have been recently
proposed as an interesting alternative to tree-based approaches. How-
ever, many properties of mesh overlays remain little understood as they
are difficult to study due to the lack of a predefined structure. In this
paper we show that when data is streamed through mesh overlays, it
follows tree-based diffusion patterns and thereby mesh-based streaming
can be studied in a similar manner to tree-based approaches. We iden-
tify properties of the diffusion trees that emerge in mesh overlays and
compare them to optimal diffusion trees. We show that the emerging dif-
fusion trees exhibit suboptimal height and are unbalanced, which results
in increased buffering delay of mesh-based P2P systems, particularly in
heterogeneous environments. We present an algorithm that adapts the
mesh overlay to shorten diffusion trees and to reduce the buffering delay.

1 Introduction

The use of peer-to-peer (P2P) overlays for multicast media streaming has gained
significant attention in recent years as it alleviates scalability problems of cen-
tralised client-server architectures and weaknesses that prevent a wide adoption
of IP Multicast. Two main approaches for building overlays for P2P multicast
media streaming are tree-based [1] and mesh-based [2,3,4]. The former approach
explicitly places peers in a single tree or multiple multicast trees, where they
receive the stream from their parent(s) and forward it to their children. In the
mesh-based approach, the P2P overlay is unstructured, formed by peers con-
necting to neighbours, which may be randomly selected. The media stream is
typically split into small data blocks that are exchanged between neighbouring
peers, resulting in their propagation throughout the overlay. The main advantage
of mesh overlays compared to tree-based overlays is their much higher robust-
ness to peer churn. In tree-based approaches, a peer can receive data only from
its specified parent and when that parent fails or leaves the network, its whole
sub-tree loses that data until the tree is reconstructed. In mesh-based streaming
systems, data chunks can be obtained from any neighbour that holds it and thus
when one neighbour fails, other neighbours may still provide the data. For that
reason, many researches focus on mesh overlays for P2P streaming. However,
one problem posed by mesh overlays is that they do not rely on any predefined

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 126–139, 2008.
c© IFIP International Federation for Information Processing 2008

Tree-Based Analysis of Mesh Overlays for Peer-to-Peer Streaming 127

network structure and thereby are more difficult to study than tree-based over-
lays. In this paper, we show that when data chunks are streamed over mesh
overlays, tree-based diffusion patters dynamically emerge in the overlay. These
tree-based patterns of diffusion can be studied in the same manner as tree-based
overlay structures. The contribution of this paper is that we identify and anal-
yse properties of the emerging tree structures in mesh overlays and, in order to
evaluate their performance, we compare them to optimal diffusion trees in both
homogeneous and heterogeneous environments. This provides insights into how
mesh overlays can be adapted to reduce buffering delay in mesh-based stream-
ing systems to a theoretical minimum. Based on this analysis we developed an
algorithm that reduces diffusion tree heights in a mesh overlay and thus, also
reduces buffering delay.

The paper is organised as follows: in Section 2 different approaches to the
analysis of mesh-based streaming systems are presented. Section 3 shows how
diffusion trees emerge in mesh overlays and analyses these diffusion trees. Finally,
the adaptation algorithm is presented and evaluated in Section 4 before the paper
concludes in Section 5.

2 Related Work

Many mesh-based P2P streaming systems have been proposed in the last few
years [2,3,4], but none of them has been formally analysed due to their
complexity.

Chunkyspread [5] is one example of an unstructured approach to media
streaming. It uses a multi-tree (multi-description) based structure on top of
an unstructured overlay. The structure is very dynamic as each peer periodically
searches for new partners in its local environment. Peers exchange information
(load, latency, creation of loops) with their neighbours to search for the best
parent-child pairs for each tree. The constraints on these relationships are (1)
to avoid loops, (2) to satisfy any tit-for-tat constraints, (3) to adapt load (shall
be in a per peer defined range) and (4) to reduce latency. The loop-preventing
algorithm which is run on the overlay ensures that chunks are distributed fol-
lowing a multi-tree structure. In this paper we argue, that trees do not need to
be built explicitly, but that they are inherent to the mesh structure.

In contrast, SplitStream [1] is a tree-based P2P media streaming architecture
that focuses on robustness. Different to our model, the stream is split into multi-
ple stripes that can be distributed independently. A distinct tree is constructed
for each of these stripes on all the participating peers. The robustness in Split-
Stream comes from the fact that each node is an inner node in at most one tree
and a leaf node in all the other trees. Thus, if a peer fails, only one distribution
tree is affected and has to be rebuilt. In our model a tree structure close to
SplitStream is derived from a mesh-based approach. Peers are also inner nodes
in only one tree and leaf nodes in all others. Due to the mesh structure, trees
are dynamically built and adapted if nodes fail or bandwidth conditions change.

128 B. Biskupski et al.

A comparative study of tree- and mesh-based approaches for media streaming
is presented in [6]. Authors first propose an organised view of data delivery in
mesh overlays, which consists of data diffusion and swarming phases, and later
introduce delivery trees, which they discover in mesh overlays in a similar fashion
to diffusion trees described in our paper. Our work is different in that we focus
on formally analysing properties of diffusion trees rather than evaluating them
by simulation. We also propose an overlay adaptation algorithm that improves
properties of these trees.

A different approach to analysing P2P media streaming systems are fluid
models. In [7] the authors present a stochastic fluid model that takes into account
peer churn, heterogeneous peer upload capacities, peer buffering and delays. In
this paper we analyse the distribution trees created in a mesh such that known
adaptations for tree-based approaches can be applied to meshes.

In [8] tree-based P2P streaming systems are analysed and it is shown that
moving high-bandwidth nodes close to the source is advantageous and leads
to high performance gains in terms of total download capacity. We show in
this paper that the same holds for mesh-based systems and that trees can be
shortened by adapting the location of high-bandwidth nodes in diffusion trees.

3 Mesh-Based P2P Streaming

The mesh-based approach to data streaming originates from research on gossip
and epidemic protocols, where nodes periodically exchange information among
each other, which results in the eventual dissemination of all information to
all nodes. The BitTorrent [9] file-sharing system popularised this approach for
the dissemination of large volumes of data from a transmitter to all receivers.
BitTorrent creates an unstructured overlay mesh to distribute a data file. A file
is divided into chunks, which are exchanged by nodes in a pull-based fashion
until nodes can reconstruct the original file.

In contrast to file-sharing systems, the transmitter in live P2P streaming
protocols does not have access to the entire data as it is generated “live”, and
thus, it cannot split the whole data into chunks for distribution throughout the
network. In order to leverage mesh-based delivery, streaming protocols require
a delay between the stream creation time at the transmitter and the receiver
playback time. The data stream produced within this delay is split into small
chunks and distributed throughout the network similar to the way chunks of an
entire file are distributed in mesh-based file-sharing protocols. Nodes maintain
sliding windows that reflect this delay and capture which chunks have already
been received and which are still missing. The buffers move forward with the
speed of the original video transmission rate, which is discovered by all nodes
from the video stream. The beginning of the buffer points at the chunk currently
being played at the receiving node and the end of the buffer reflects the chunk
currently generated at the transmitting node. Chunks that do not arrive in time
(outside the sliding window) are lost and cause video playback degradation.

Tree-Based Analysis of Mesh Overlays for Peer-to-Peer Streaming 129

A mesh overlay is created in a random fashion by joining nodes connect-
ing with selected nodes. The selection of neighbours can be based on different
strategies, e.g., random or bandwidth-based. Neighbouring nodes maintain lo-
cal knowledge about data chunks they possess by informing each other whenever
they receive a new chunk. The missing chunks are requested from neighbours im-
mediately or periodically, following a chunk selection algorithm. Different strate-
gies such as most-recent-chunk-first, rarest-chunk-first or random can be used to
schedule the chunk requests.

3.1 Mesh Overlay Properties

In our previous research on mesh overlay adaptation [10,11], we identified that
completely random mesh overlays limit the network throughput by underutil-
ising the available upload bandwidth at peers. Limited network throughput in
turn reduces possible video streaming rates and the corresponding video quality.
We showed properties of mesh overlays that, when satisfied, optimise the net-
work throughput. This requires that each peer maintains two sets of neighbours
— (1) children, which are the neighbours to which data is uploaded and (2)
parents, which are the neighbours from which data is downloaded. The network
throughput is optimised in such a directed mesh overlay when:

– Each peer has a constant (configurable) number of parents
– Each peer has a number of children proportional to its upload bandwidth

We showed in [10] that a mesh overlay satisfying these two conditions opti-
mises the upload bandwidth utilisation and enables all peers to download at the
maximum possible global video streaming rate. We also proposed algorithms for
adapting the mesh overlay to satisfy these conditions. In this paper, we conduct
our analysis on directed mesh overlays that satisfy these two conditions and thus
we can provide a fair comparison to multiple-tree-based overlays that also opti-
mise the network throughput. This paper is novel in that we show how diffusion
trees emerge in these adapted directed mesh overlays; we analyse properties of
diffusion trees and compare them to those of multiple-tree-based overlays; and
finally, propose an algorithm that improves these properties.

3.2 Tree-Based View of Mesh Overlays

Mesh overlays are very dynamic and thus are difficult to analyse. In contrast,
trees are well understood and it is easier to derive properties of trees. Meshes can
be seen as a structure of multiple trees if we assume that bandwidth of all peers
remain constant over time and that the chunk selection algorithm is determin-
istic. We assume that peers request missing chunks from parents immediately
when they are notified of them, following a most-recent-chunk-first strategy, i.e.,
when a decision is made between two chunks, a chunk with a more recent time-
stamp is requested. This chunk request strategy is based on an observation that
most recent generated chunks are also the rarest in the overlay and thus need to
be given priority for distribution.

130 B. Biskupski et al.

We assume that the stream rate is set to the maximum rate supported by the
overlay such that all peers can receive it, i.e., equal to

�N
i uploadi

N−1 , where N is the
total number of peers including the source node (the source uploads, but does
not download data). We also assume that the mesh overlay satisfies conditions
discussed in Section 3.1 and that a peer’s upload bandwidth is shared equally
by all its connections. Under such assumptions, upload of all peers is saturated
and the upload rate of each link is the same, equal to

�N
i uploadi

(N−1)∗K , where K is a
globally configurable number of parents of each peer. From this follows that each
chunk is transferred over a link in time s∗(N−1)∗K

�
N
i uploadi

, where s is the size of a chunk.

The source node generates a new chunk every s∗(N−1)
�N

i uploadi
time units, so by the

time a single chunk is transferred to a child, K new chunks are generated. Since
it is desired that the source node sends different chunks to different children
(to distribute chunks equally in the overlay), we use a round-robin strategy to
push chunks from the source node to its direct children in which the ith child
receives chunks with sequence numbers t0 + j ∗ K + (i mod K), for some initial
t0 and j = 0, 1, 2, 3, Peers, which are not direct children of the source node,
request the most recently generated missing chunks, so they always request a
missing chunk that travelled the least number of hops (and time). Effectively, K
diffusion trees emerge, where each tree propagates every Kth chunk. This process
of diffusion trees emerging in a mesh overlay, which has properties outlined in
Section 3.1, is illustrated in Figure 1 for K = 2.

(a) Directed mesh overlay where
each peer has 2 parents

(b) Corresponding diffusion trees

Fig. 1. Mesh overlay and its two diffusion trees

3.3 Analysis

In this section we show how optimal multiple trees are constructed in both
homogeneous and heterogeneous environments and analyse their heights in order
to compare them, in the next subsection, to diffusion trees emerging in mesh
overlays.

Tree-Based Analysis of Mesh Overlays for Peer-to-Peer Streaming 131

Height of Optimal Trees in a Homogeneous Environment. First, we analyse a
homogeneous environment, where all peers have the same upload capacity. Op-
timal K distribution trees can be created by placing each peer as an inner node
in exactly one tree and as a leaf node in the other K − 1 trees. Thus, each peer
has K parents, one in each optimal distribution tree. In a homogeneous environ-
ment, this means that the out-degree d of each peer is equal to K. Since a peer
has children in only one tree, K and d are the number of children of each inner
node in each tree. Thus, the height of each of K optimal distribution trees in a
homogeneous environment with N nodes is equal to the height H(d, N) of an
evenly balanced tree with N nodes and out-degree d, which is calculated using
a relation

H(d,N)∑

i=0

di = N

based on the fact that there are di peers at tree level i. Solving this geometric
sequence gives an equation for the height of a balanced homogeneous tree:

H(d, N) = logd ((d − 1) ∗ N + 1) − 1 (1)

Therefore, the height of each of K optimal trees in a homogeneous environment
is given by H(K, N). In this paper we also use an equation for the number of
leaf nodes L(d, N) in a balanced homogeneous tree with N nodes and out-degree
d, given by

L(d, N) = dH(d,N) =
(d − 1) ∗ N + 1

d
(2)

Fig. 2. Optimal construction of K trees consisting of fast and slow nodes

Height of Optimal Trees in a Heterogeneous Environment. We study the con-
struction of optimal trees in a heterogeneous environment by using two types of
peers — Ns slow peers and Nf fast peers, where a fast peer has upload band-
width i times higher than a slow peer. In such a scenario, the optimal placement
of peers that minimises the height of each of the K trees is presented in Figure 2.
Similar to homogeneous environments, each peer is an inner node in exactly one
tree and a leaf node in K − 1 trees. Additionally, fast nodes are placed at the
top of the trees in order to reduce the height of the trees. Slow nodes have
out-degree d, while fast nodes can upload i times faster, so their out-degree is

132 B. Biskupski et al.

i ∗ d. The out-degree of slow and fast nodes is derived from the fact that the
total number of outgoing links of all peers must be equal to the total number
of incoming links in the P2P overlay, while taking into account that the source
node has out-going links, but does not have any incoming links. From this we
have Ns ∗ d + Nf ∗ i ∗ d = K ∗ (Ns + Nf − 1), which gives

d =
K ∗ (Ns + Nf − 1)

i ∗ Nf + Ns
(3)

The height Hhet of each heterogeneous tree constructed as in Figure 2 is cal-
culated as Hhet = H1 + H2 + 1 + 1, which is the sum of the height H1 of the
upper part of the tree composed of inner fast nodes only, the height H2 of the
lower part of the tree composed of slow inner nodes only, plus one level between
the two parts of the tree and one level for the peers that are leaves in the tree
(and which are inner nodes in other trees). The height H1 is calculated using Eq.
1 as the height of a homogeneous tree of Nf/K fast nodes with out-degree i ∗ d:

H1 = H(i ∗ d,
Nf

K
) = logi∗d

(
(i ∗ d − 1) ∗ Nf

K
+ 1

)
− 1

The height H2 is calculated as the height of a homogeneous tree of Ns/K
L1∗i∗d slow

nodes with out-degree d

H2 = H(d,
Ns/K

L1 ∗ i ∗ d
) = logd

(
(d − 1) ∗ Ns/K

L1 ∗ i ∗ d
+ 1

)
− 1

where L1 = L(i∗d,
Nf

K) is the number of leaves in the upper part, i.e., H1. From
these equations we derive a formula for the optimal height Hhet of each optimal
heterogeneous diffusion tree

Hhet = logi∗d

(
(i ∗ d − 1) ∗ Nf

K
+ 1

)
+ logd

(
(d − 1)

Ns

(i ∗ d − 1) ∗ Nf + K
+ 1

)

(4)
where d is the out-degree of a slow node given by Eq. 3.

3.4 Evaluation

We compare the optimal tree heights, calculated in Equation 4, to the average
height of diffusion trees that emerge in mesh overlays and are calculated by our
custom-built simulator of mesh overlays. The simulator relies on the assumptions
outlined in Sections 3.1 and 3.2. We used 50,000 nodes and studied both a homo-
geneous environment and environments with different levels of heterogeneity. In
experiments involving heterogeneity, 10% of all nodes are fast nodes with upload
bandwidth 2 and 8 times higher than the remaining slow nodes. The overall up-
load bandwidth in all overlays is the same. The results are presented in Figure 3.
The results show that the average height of diffusion trees in homogeneous mesh
overlays is around 2 levels above the optimal height, for all K. The reason for

Tree-Based Analysis of Mesh Overlays for Peer-to-Peer Streaming 133

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10 12 14 16

T
re

e
he

ig
ht

Number of trees (number of parents)

Optimal (homogeneous)
Mesh (homogeneous)

Optimal (10% have 2x higher upload)
Mesh (10% have 2x higher upload)

Optimal (10% have 8x higher upload)
Mesh (10% have 8x higher upload)

Fig. 3. Average tree height for different number of parents and different heterogeneity
levels

that is that in the optimal tree each peer is an inner node in exactly one diffusion
tree, whereas in the trees emerging in mesh overlays a peer is located randomly
and can be an inner node in several trees. The results show that when the level
of heterogeneity increases, the gap between the height of diffusion trees in the
mesh overlay and optimum trees significantly increases. For the case with 10% of
peers being 8 times faster than the remaining slow peers, the average height of a
diffusion tree in the mesh overlay for K = 2 is 3 times higher than the optimum
and drops to 2 times over the optimum for K = 16. Increased heterogeneity
results in higher importance of the location of fast and slow peers in the tree.
Worse performance for small K, in turn, is caused by higher variation in the
height of diffusion trees - some leaves are much lower or higher than the others.
This tree imbalance can be observed in Figure 4 that shows the cumulative dis-
tribution function (CDF) of the depth of leaf nodes in diffusion trees that emerge
in a mesh overlay for both homogeneous and heterogeneous environments. The
highest diffusion tree imbalance is for small K.

Chunk Propagation Delay. In order to measure the impact of the tree height on
the buffering delay, we analyse the time required to propagate a chunk through
the diffusion trees in mesh overlays. Since in a mesh overlay, a peer can be placed
anywhere in each diffusion tree, its buffering delay needs to accommodate the
maximum difference between chunk arrivals in each distribution tree, which is
equal to the chunk propagation delay. The propagation delay can be calculated as

delay =
H ∗ s ∗ K ∗ (N − 1)

∑N
i uploadi

134 B. Biskupski et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Depth

k=2
k=4
k=6
k=8

k=10
k=12
k=14
k=16

Fig. 4. CDF of the height of diffusion trees in mesh overlays in a heterogeneous (10%
peers have 4x upload) environment

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12 14 16

P
ro

pa
ga

tio
n

de
la

y
(s

ec
)

Number of trees (number of parents)

Optimal (homogeneous)
Mesh (homogeneous)

Optimal (10% have 2x higher upload)
Mesh (10% have 2x higher upload)

Optimal (10% have 8x higher upload)
Mesh (10% have 8x higher upload)

Fig. 5. Propagation delay for varying number of trees for mesh overlays and the optimal
case

where H is the height of the tree, s the size of a chunk and the remaining
part of the formula derives from the equation for the bandwidth of a link (see
Section 3.2). It can be observed that this delay represents a trade-off between
the height of a tree and the number K of distribution trees. Larger K produce
shorter trees, however, it takes longer for a node to upload a chunk to all its
children (since a node has more children). Smaller chunk sizes allow for their

Tree-Based Analysis of Mesh Overlays for Peer-to-Peer Streaming 135

faster propagation, but more control messages are required to notify/request
chunks. Propagation delay as a function of the number of diffusion trees (peer
parents) is shown in Figure 5 (for an average upload bandwidth of 1,000kbps
and a chunk size of 4KB). The results show that a small number of diffusion
trees result in shorter buffering delays. However, small number of diffusion trees
also means that the number of parents of each peer is small and this reduces
robustness to peer failures.

4 Mesh Adaptation Algorithm

In the previous sections we showed that the heights of diffusion trees in mesh
overlays are much higher than the optimal height. In this section we present
an algorithm that adapts the location of high-bandwidth peers dynamically. To
shorten tree lengths it is advantageous to place high-bandwidth nodes near the
source and low-bandwidth peers near the leaves.

4.1 Algorithm

We assume that peers have accurate information about their bandwidth, either
through user input or through passive measurement techniques, such as [12].
Furthermore, the assumption is made that techniques are deployed that prevent
peers from cheating about their bandwidth. To do this, peers may for exam-
ple team up to compare effective bandwidth of neighbours with their indicated
bandwidth and drop links to cheaters if the difference is too high. Alternatively,
a reputation system like [13] could be implemented.

Each chunk being distributed from the source s to a peer p contains a hop
count of the path it travelled. Peers can use this hop count as an estimate of their
distance to the source. As explained in previous sections, the goal of each peer
is to climb up, respectively to its upload bandwidth, in one diffusion tree and
to become a leaf node in all other diffusion trees. In order to achieve this, each
peer periodically executes Algorithm 1, which improves a peer’s position in one
diffusion tree. Since each parent of a peer is responsible for delivering only one
tree, the algorithm aims at improving the peer’s position by replacing its current
best parent (nearest to the source) with one of its grandparents that is closer to
the source, subject to the conditions discussed below, effectively moving higher
in one tree. Specifically, a peer p tries to find its parent parent and a grandparent
grandparent (a parent of parent) that satisfies the following conditions:

1. distance(grandparent) < distance(bestparent(p))
2. upload(p) > upload(parent) OR bestparent(parent) �= grandparent

The first condition requires that grandparent is closer to the source than the
current best parent. The second condition requires that the upload bandwidth
of peer p is greater than the upload bandwidth of parent (child of grandparent)
or grandparent is not the best parent of parent (parent does not climb up in
that tree) and thus, parent can give up that grandparent. If these two conditions

136 B. Biskupski et al.

Algorithm 1. Adapting position of peer p in the mesh overlay
for all parent ← parent(p) do

for all grandparent ← parent(parent) do
if parent �= source then

if distance(grandparent) < distance(bestparent(p)) then
if upload(p) > upload(parent) or bestparent(parent) �= grandparent
then

exchangePosition(p, parent, grandparent)
end if

end if
end if

end for
end for

Fig. 6. Peers p and parent exchange their positions respectively to grandparent

are satisfied, then peer p climbs up one level by: replacing parent as a child
of grandparent, becoming a new parent of parent and losing one child, which
becomes a child of parent (Figure 6 shows the exchange protocol). This way, the
number of children and parents of all peers involved (p, parent and grandparent)
remain unchanged and thus, the properties of the overlay required for achieving
the optimal network throughput, described in Section 3.1, remain satisfied. The
presented adaptation algorithm effectively results in each peer climbing up in
one tree as long as its parent in this tree has lower upload bandwidth and
climbing down in other trees (by giving up its position in these other trees to its
children that climb up in these trees). The algorithm does not affect the network
throughput as it does not change the number of children or parents of any peer.

4.2 Evaluation

In this section, we show the results of our evaluation of the adaptation algorithm
presented in Section 4.1. The algorithm was implemented in our custom-built
simulator and executed on 50,000 nodes with different ratios of upload band-
width of fast and slow nodes. First, an initial mesh was created and tree heights

Tree-Based Analysis of Mesh Overlays for Peer-to-Peer Streaming 137

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10 12 14 16

T
re

e
he

ig
ht

Number of trees (number of parents)

Optimal (10% have 2x higher upload)
Mesh (10% have 2x higher upload)

Adapted Mesh (10% have 2x higher upload)
Optimal (10% have 8x higher upload)

Mesh (10% have 8x higher upload)
Adapted Mesh (10% have 8x higher upload)

Fig. 7. Average tree heights for different proportions of upload bandwidth and 50,000
peers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Depth

k=2
k=4
k=6
k=8

k=10
k=12
k=14
k=16

Fig. 8. CDF of the height of diffusion trees in adapted mesh overlays in a heterogeneous
(10% peers have 4x upload) environment

calculated. Then, Algorithm 1 was executed to adapt the positions of all peers
until no more adaptations were possible.

In all experiments 10% of all peers had i (i = {2, 8}) times higher upload band-
width than the remaining peers. The number of trees K varied from 2 to 16. As
can be seen in Figure 7, there is a significant benefit of placing high-bandwidth
nodes near the source. The average tree heights decrease by about 35% for two

138 B. Biskupski et al.

trees (K = 2). The same improvement is in the buffering delay, which is pro-
portional to the tree height. Figure 8 shows the cumulative distribution function
(CDF) of the depth of leaf nodes in diffusion trees in adapted mesh overlays.
This figure, when compared to the analogous Figure 4, shows that diffusion trees
in the adapted mesh overlays are significantly more balanced. However, despite
of much improvement, some imbalance in the diffusion tree heights remains and,
for that reason, the height of diffusion trees (and the corresponding buffering
delay) is suboptimal. To achieve optimal diffusion trees, a more system-wide
adaptation is required, which is a focus of our future work.

5 Conclusions

In this paper we analysed data diffusion in mesh overlays. We showed that
data chunks follow dynamically formed diffusion trees and analysed properties
of these trees. The proposed structured view of meshes allows us to apply knowl-
edge about trees directly to mesh-based streaming approaches. Our results show
that diffusion trees in mesh overlays are unbalanced with suboptimal height and
thereby, buffering delay in mesh overlays is suboptimal. With the increasing het-
erogeneity in an overlay, the diffusion trees become even more suboptimal due
to imperfect placement of fast peers in the diffusion trees. This implies that a
mesh adaptation algorithm that places fast nodes closer to the source in ex-
actly one diffusion tree shortens the height and improves the balance of diffusion
trees, thereby significantly reducing the data buffering delay. We presented such
a mesh adaptation algorithm and showed that it improves tree heights. In future
work the algorithm will be enhanced to better balance the height of diffusion
trees, implemented in our prototypes and experimentally evaluated to show its
effectiveness in real-world scenarios.

Acknowledgements

This work is supported in part by MiNEMA, ESF, Swiss National Foundation
Grant 102819 and Enterprise Ireland under the Commercialisation Proof of Con-
cept Programme (MeshTV).

References

1. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.:
SplitStream: High-bandwidth multicast in cooperative environments. In: SOSP
2003: Proceedings of the nineteenth ACM Symposium on Operating Systems Prin-
ciples, New York, NY, USA, pp. 298–313 (2003)

2. Pai, V.S., Kumar, K., Tamilmani, K., Sambamurthy, V., Mohr, A.E.: Chainsaw:
Eliminating trees from overlay multicast. In: Castro, M., van Renesse, R. (eds.)
IPTPS 2005. LNCS, vol. 3640, pp. 127–140. Springer, Heidelberg (2005)

3. Magharei, N., Rejaie, R.: PRIME: Peer-to-peer receiver-driven mesh-based stream-
ing. In: 26th Annual IEEE Conference on Computer Communications IEEE IN-
FOCOM 2007 (2007)

Tree-Based Analysis of Mesh Overlays for Peer-to-Peer Streaming 139

4. Pianese, F., Perino, D., Keller, J., Biersack, E.: PULSE: an adaptive, incentive-
based, unstructured p2p live streaming system. IEEE Transactions on Multimedia,
Special Issue on Content Storage and Delivery in Peer-to-Peer Networks 9(6) (2007)

5. Venkatraman, V., Yoshida, K., Francis, P.: Chunkyspread: Heterogeneous unstruc-
tured end system multicast. In: Proceedings of 14th IEEE International Conference
on Network Protocols (November 2006)

6. Magharei, N., Rejaie, R., Guo, Y.: Mesh or multiple-tree: A comparative study of
live p2p streaming approaches. In: Proceedings of 26th IEEE International Con-
ference on Computer Communication (INFOCOM), pp. 1424–1432 (May 2007)

7. Kumar, R., Liu, Y., Ross, K.: Stochastic fluid theory for p2p streaming systems. In:
Proceedings of 26th IEEE International Conference on Computer Communication
(INFOCOM), pp. 919–927 (May 2007)

8. Schiely, M., Renfer, L., Felber, P.: Self-organization in cooperative content distri-
bution networks. In: Proceedings of IEEE International Symposium on Network
Computing and Applications (NCA), pp. 109–116 (July 2005)

9. Cohen, B.: Incentives build robustness in BitTorrent. In: the 1st Workshop on
Economics of Peer-to-Peer Systems, Berkeley, CA, USA (June 2003)

10. Biskupski, B., Cunningham, R., Dowling, J., Meier, R.: High-bandwidth mesh-
based overlay multicast in heterogeneous environments. In: AAA-IDEA 2006: Pro-
ceedings of the 2nd International Workshop on Advanced Architectures and Al-
gorithms for Internet Delivery and Applications, pp. 4–11. ACM Press, New York
(2006)

11. Biskupski, B., Cunningham, R., Meier, R.: Improving throughput and node prox-
imity of p2p live video streaming through overlay adaptation. In: Proceedings of
the 9th IEEE International Symposium on Multimedia (ISM 2007), pp. 245–252.
IEEE Computer Society, Los Alamitos (2007)

12. Strauss, J., Katabi, D., Kaashoek, F.: A measurement study of available bandwidth
estimation tools. In: IMC 2003: Proceedings of the 3rd ACM SIGCOMM conference
on Internet measurement, New York, NY, USA, pp. 39–44 (2003)

13. Nandi, A., Ngan, T.W., Singh, A., Druschel, P., Wallach, D.S.: Scrivener: Pro-
viding incentives in cooperative content distribution systems. In: Alonso, G. (ed.)
Middleware 2005. LNCS, vol. 3790, pp. 270–291. Springer, Heidelberg (2005)

Managing Peer-to-Peer Live Streaming

Applications

Raymond Cunningham, Bartosz Biskupski, and René Meier

Distributed Systems Group,
Department of Computer Science,

Trinity College Dublin

Abstract. A number of p2p live streaming systems [1], [2], [3], [4], [5],
[6] and [7] have been proposed in recent years. Typically, the description
of these systems focuses on how the live stream is transmitted from its
source to a number of viewers within the particular p2p network and
how these systems deal with the failure of one or more viewers during
transmission of the stream. An important aspect of each of these sys-
tems that is typically overlooked is how individual stream transmitters
and viewers of these streams are managed in terms of registration, con-
figuration and maintenance. In this paper, a set of management related
abstractions common to many p2p live streaming systems are identified.
This paper describes the MeshTV architecture, capturing these abstrac-
tions, to simplify the management of p2p live streaming applications.
The architecture has been evaluated through a number of experiments
and has been assessed against existing related work.

1 Introduction

A number of Peer-to-Peer (p2p) live streaming systems [1], [2], [3], [4], [5], [6]
and [7] have been proposed in recent years. Typically the description of these
systems focuses on how the particular live stream is transmitted, for example,
whether it uses an underlying tree based or mesh based topology and/or the
assumptions made about the underlying network infrastructure (such as updates
to intermediate network level routers, etc).

In contrast, this paper focuses on an architecture and the corresponding
abstractions needed to ease the deployment and ongoing management of an
application-level p2p live streaming system. Our architecture does not make any
assumptions about the underlying network layer routing infrastructure. In gen-
eral, the abstractions common to p2p live streaming systems can be broken into
a number of categories:

– Coordination
– Management
– Communication.

The coordination category comprises a number of use cases such as the reg-
istration of participating peers (both a transmitter and one or more viewers)

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 140–153, 2008.
c© IFIP International Federation for Information Processing 2008

Managing Peer-to-Peer Live Streaming Applications 141

which is typically not described in existing p2p live streaming systems. In ad-
dition, how the ongoing configuration of these participating peers is achieved is
typically not described. An underlying assumption of most live streaming p2p
overlay based systems is that the total system upload (i.e., the sum of the upload
capacities at all peers) can be utilised correctly to enable all peers to download
the stream at the stream rate at which the transmitter transmits. Thus, it is
important for a running system to be able to verify this latter assumption.

The management category includes a number of different aspects of a p2p
live streaming application such as the gathering of relevant statistics related to
the live stream and the enforcement of a revenue model for a particular stream.
These aspects are typically overlooked in favour of ensuring that the p2p live
streaming system maximises a global system parameter such as the total upload
utilisation. However, the particular system is typically unaware of what the total
system upload capacity actually is.

The final abstraction covers the lower level management related issues of com-
municating the live stream from a transmitter to a number of interested viewers.
Typically, how bootstrapping is achieved in most systems is not covered in detail
as it is assumed to be a solved problem. However, the solution to this problem
depends on the number of current peers in the system and the percentage of the
peers that are joining and/or departing the system.

These abstractions and how they relate to the MeshTV architecture will be
further elaborated in section 2. Section 2 is followed by a description in section
3 of a realisation of the lowest layer of the architecture and an evaluation of this
realisation in section 4. These sections are followed by an assessment of related
work and how this work fits into the MeshTV architecture in section 5. Finally,
section 6 concludes the paper and discusses future work.

2 MeshTV Architecture

As illustrated in Figure 1, the MeshTV Architecture is broken into a number
of layers corresponding to the categories identified in section 1. The upper most
layer of the architecture is called the Stream Coordination layer and enables po-
tential viewers of a particular stream to discover the stream (typically by brows-
ing a list of streams) that a transmitter is transmitting or intends to transmit
and for the particular peers that are providing the stream to be easily configured
throughout the lifetime of the stream.

2.1 Coordination

Before a transmitter can begin transmitting a live stream, it is required to reg-
ister its details (such as type of content, point of contact for the stream (i.e.,
underlying mesh/tree component endpoint), start time of transmission, etc) so
that potential viewers of the stream can become aware of this stream. The reg-
istration of a particular stream occurs at a logically centralised stream manager
that can record relevant details about the stream for later querying by interested

142 R. Cunningham, B. Biskupski, and R. Meier

Fig. 1. MeshTV Architecture

potential viewing peers. Note that how to secure the registration of a transmitter
(and a potential viewer) will not be addressed in this paper though a number of
possible approaches exist such as [8] and [9].

As will be seen in the following sections, this logically centralised stream
manager plays an important role in a number of the abstractions identified in
this paper.

When the transmitter registers its information with the stream manager, the
stream manager records information related to the transmission with the statis-
tics management component and then generates a billing profile for the future
transmission of the content by using the lower layer revenue management com-
ponent. This profile may allow advertisements to be tailored to the content of a
particular transmission or the transmitter may require a potential viewer to pay
to watch its particular transmission.

In general, the configuration of the different components that constitute a live
streaming application should be configured in one of two ways, depending on the
number of peers in the topology. Firstly, when the number of nodes is below a
known threshold configuration may be carried out directly by a particular peer
such as the transmitter contacting each of the viewing peers directly to adapt
their operation. For example, if the transmitter wishes to switch to a newer codec
(to reduce bandwidth consumption) while transmitting using an older codec,
the transmitter may contact each individual viewing peer aware of this change
(assuming that the number of viewing peers is relatively small). Secondly, if the
number of viewing peers is above the threshold, configuration could be carried

Managing Peer-to-Peer Live Streaming Applications 143

out using a gossip protocol ([10], [11], [12]) to spread the burden of configuration
across all the peers in the system.

This dual mode of operation for the configuration of different aspects of a
peers behaviour is important as existing live streaming systems do not highlight
how such configuration is achieved and focus on the operation of these when
a certain number of participating peers are in the system. The approach to
configure/tune a live streaming system with a total of 100 peers can be very
different from a system with 1,000 peers which in turn can be different from a
system with 10,000 peers.

An important part of the configuration/reporting component of the MeshTV
architecture is how bandwidth related information/statistics (such as total up-
load bandwidth utilisation) is reported. For example, the total upload bandwidth
utilisation is an important global system property that existing mesh based sys-
tems and multi-tree systems attempt to maximise. A human manager or a real-
isation of the MeshTV architecture may use this bandwidth related information
to change relevant protocol parameters to better adapt to the current dynamic
environment within which the particular stream is being transmitted.

In a similar way to how system wide configuration is achieved, the collection
of bandwidth related statistics would also have a dual mode of operation with
direct point to point communication being used for the live streaming systems
with a small number of peers and aggregation [13], [14], [15] (with an underlying
gossip protocol) being using for larger systems. This second (and more complex)
approach using a number of aggregation rounds may be initiated by any peer in
the system gossipping an initial aggregation message to its set of neighbours that
then gossip this message onto their neighbours. As the aggregation message con-
taining the aggregated statistics propagates throughout the system, each peer
on receiving the aggregation message updates these statistics with local infor-
mation related to its bandwidth usage. These local bandwidth related statistics
are maintained by the statistics component of the management layer.

2.2 Management

There are two main parts in the management layer of the MeshTV architecture.
As briefly discussed in the previous sub-section, the statistics management com-
ponent is responsible for aggregating important statistics related to the trans-
mission of the stream such as, for example, the total number of peers, the total
amount of bandwidth downloaded at all peers and the average neighbour degree
of each peer throughout the system. This statistical information could be used
locally by the peer or be used to inform other peers (such as joining peers) about
the state of the system.

An additional capability of the statistics component is to build a model of how
the lower communication layer uses the peers upload bandwidth as the stream
is transmitted. This upload bandwidth model would depend on the character-
istics of a particular peer’s set of neighbours and may require the peer to learn
how much upload bandwidth it can currently offer to the overall live streaming
system.

144 R. Cunningham, B. Biskupski, and R. Meier

The second part of the management layer is the revenue component whose
role is to ensure that a particular revenue model for the stream is enforced. There
are a large number of possible revenue models for a stream that are possible such
as one based on advertisements, a single advance up front payment or a split
revenue model with the first number of minutes free followed by micro-payments
for each subsequent minute of viewing.

Note that some of these revenue models require registration of the viewing
peer while others may not. A transmitter may wish to change the revenue model
of its stream based on the current demand with one revenue model being used
at the beginning of a stream’s transmission before being switched to another
revenue model as demand increases.

The commencement of a stream is recorded with a local and/or remote statis-
tics component before retrieving optional adverts from a local and/or remote
revenue component. In the remote case, this information is recorded with the
stream manager. The stream manager uses this information to provide a list of
possible streams that can be viewed. Before returning this list of streams, the
stream manager retrieves relevant statistics of the currently available streams
(possibly using a profile of the viewing peer). Relevant statistics for a stream may
include the current bandwidth consumed most recently by the stream, the cur-
rent stream rate and number of viewers that are currently watching the stream.

In addition to the above statistics, the stream manager also retrieves details
related to the cost of viewing each stream in the list of streams. This should
allow different types of pricing to be achieved based on the type of viewer that
is requesting the stream.

2.3 Communication

In this section, a number of lower level abstractions are presented that are related
to the transmission and reception of the live stream.

After registering its details with the stream manager, the transmitter begins
transmitting its content by sending it to the communication layer in the MeshTV
architecture as illustrated in Figure 1. The mesh/tree component is considered
as a decentralised component (which we consider as a single logical component
for the purposes of this document) that manages the distribution of the stream
content from the transmitter to the other viewing peers that are participating in
the mesh/tree. Note that this distribution can be done over either a tree-based
or mesh-based topology such as those covered in section 5.

Sending the content to the underlying topology requires that the mesh/tree
component has a list of other peers to which it can transmit. When a transmitter
begins to transmit the stream, the mesh/tree component of the transmitter
contacts the bootstrap component of the communication layer to initialise a new
mesh or tree for the transmission that is about to start. This in turn results in a
mesh or tree peer being created that represents the transmitter on the underlying
topology. The mesh/tree component (on the transmitter) then initialises its list
of neighbouring nodes to be empty.

Managing Peer-to-Peer Live Streaming Applications 145

It is possible for the above steps to happen when a peer indicates its intention to
transmit a stream during registration. This allows the underlying topology to be
setup with an initial set of viewing peers before the stream begins transmission and
possibly reduces the latency at the beginning of the transmission. This bootstrap
component is considered as a logically centralised component that could be hosted
or maintained by the transmitter or could be distributed across a number of peers.

When a MeshTV viewer chooses a particular stream from the stream man-
ager, the stream manager records the addition of a new viewer with the statistics
manager and then verifies with the revenue component that the viewer has the
requisite credentials to view the stream. Thus depending on the type of stream
that is of interest, the viewer may or may not need one or more components
(such as the registration or revenue components). In a similar way to the trans-
mitter initiating the mesh/tree component for the transmission of its content,
the mesh/tree component (on behalf of a viewer) must also join the mesh/tree
by utilising the services of the local bootstrap component. Firstly, the mesh/tree
component sends a request to join the topology (previously created by the trans-
mitter) to the bootstrap component for that topology which in turn results in
the creation of a new peer on the topology that represents the joining viewer. As
a result of this request, the mesh/tree component receives a number of potential
neighbours that it then uses to initialise its neighbourhood.

A common abstraction that a number of live streaming systems use is that of
a neighbourhood of peers that an individual peer uses to transmit the stream to
and/or to receive the stream from. In the MeshTV architecture, the neighbour-
hood component provides functionality to ease the burden on a particular peer of
maintaining a set of neighbouring peers such as providing one or more techniques
for the detection of a failed neighbouring peer. In addition, the neighbourhood
component can easily maintain a profile of the communication (bandwidth) ca-
pacity of each of its neighbouring peers which can then be used to inform the
decision making of the mesh/tree component.

Finally, the neighbourhood component can be used in conjunction with the
gossip component to provide the capability to communicate with all the peers in
a large-scale system. This communication could be achieved over a specialised
random mesh network or using the existing topology that is already in use by
the live stream.

3 MeshTV Peer-to-Peer Protocol

In this section we show how the communication component of the MeshTV
architecture can be realised using an existing p2p protocol. Complete details of
this p2p protocol are available in [16]. In the following subsections we present
each communication subcomponent in our system.

3.1 Mesh

The mesh overlay is formed by joining peers connecting to randomly selected
neighbours and then periodically refining them using an exploration algorithm.

146 R. Cunningham, B. Biskupski, and R. Meier

Each peer maintains two sets of neighbours - receivers, which are the neighbours
to which it uploads data and senders, which are the neighbours from which data
is downloaded. The transmitter splits the data stream into small data chunks,
which are exchanged between neighbouring peers in an epidemic fashion. Peers
maintain local knowledge about data chunks possessed by their senders and
inform receivers whenever they receive (or generate, in case of the transmitter)
a new data chunk. Whenever a sender of a peer notifies it about a newly received
chunk, the peer requests this new chunk if it has not requested this chunk from
another peer already.

The exploration algorithm is used to adapt the overlay to optimise the video
streaming throughput by maximising the utilisation of available upload band-
width of peers, which we consider the most scarce resource in the system. The
algorithm is executed by each peer independently and its goal is to adapt the
peer’s set of senders to improve the download rate. The algorithm is executed
by a peer periodically in a series of rounds and ensures that:

– A peer has a constant (configurable) number of senders.
– A peer replaces the sender from which it receives the worst download rate

with a new sender provided by the bootstrap component that selects it ran-
domly from all peers in the overlay.

The exploration algorithm adapts the mesh overlay so that (i) the upload
bandwidth of all peers is efficiently utilised, (ii) download rates of nodes are
improved and (iii) network latency between interacting peers is reduced. Upload
bandwidth is utilised by matching a peer’s number of receivers with its available
upload bandwidth. The reason for this is that a peer continues to gain new
receivers when it is underloaded and loses some receivers (i.e., receivers replace
it with less loaded senders) when it is overloaded.

A peer joining the network initially acquires a random set of senders from its
bootstrap component. The exploration algorithm will then continuously attempt
to improve the peer’s download rate by replacing the slowest senders with senders
that can provide higher transfer rates, thereby effectively optimising its set of
senders. This approach also decreases the network latency between neighbouring
peers as a consequence of using TCP to transmit data chunks, and TCP’s built-
in congestion control. The reason for this is that when multiple connections
share an overloaded link, TCP allocates more bandwidth to connections with
lower network round-trip times (RTT) [17]. When a bottleneck occurs at the
sender’s uplink, more upload bandwidth is allocated to receivers with low latency.
Similarly, when a bottleneck occurs at the receiver’s downlink, more download
bandwidth is allocated to senders with low latency. This causes receivers to
replace distant senders (for which TCP allocates less bandwidth) with senders
that are potentially closer.

3.2 Bootstrap

The MeshTV bootstrap component is used by the mesh component to provide
a random sample of peers (potential neighbours) when a peer joins the system

Managing Peer-to-Peer Live Streaming Applications 147

and whenever the exploration algorithm is executed. Bootstrap uses the gossip
component, described below, to periodically obtain a new sample of peers.

3.3 Gossip

The gossip component in MeshTV is based on a peer sampling service [18] in
which peers randomly exchange membership information between themselves.
This results in each peer periodically obtaining a random subset of all peers in
the system, which are then provided to the bootstrap component and are used
to create and refine the mesh overlay.

3.4 Transport

The MeshTV p2p protocol uses TCP for transferring data chunks between peers.
The use of TCP as a transport protocol enables the exploration algorithm to
improve proximity between neighbouring peers as described in section 3.1.

4 MeshTV Evaluation

In this section, we present an initial evaluation of the communication layer of
the MeshTV architecture encompassing the previously highlighted p2p protocol
[16]. This evaluation was carried out in ns-2 [19]. In particular, we show that the
p2p protocol optimises upload bandwidth utilisation, improves throughput and
network proximity between neighbouring peers by using the combination of the
mesh, bootstrap, gossip and transport components.

Ns-2 [19] provides a realistic model of the physical network and the TCP/IP
stack (the MeshTV p2p protocol uses TCP New Reno) at the cost of reduced
scalability limiting the number of nodes that have been simulated to 500. Our
previous experience in evaluating larger overlays in less accurate flow-level simu-
lators lead us to believe that the findings presented here are also valid for larger
overlays [7]. The physical network topology created for simulations is a full mesh
with bandwidth being limited on the access links (uplinks and downlinks). The
node bandwidth distribution has been derived from Gnutella p2p system mea-
surements [20] and nodes have been categorised into 4 groups: A, B, C and D
(see Table 1). Network latencies between nodes are selected uniformly at ran-
dom between 2ms and 300ms. MeshTV parameters used in the experiments are
presented in Table 2. The mesh overlay in the experiments is initially random,
formed by nodes selecting random senders.

4.1 Upload Utilisation

Figure 2 compares the average upload utilisation of the overlay with and with-
out the adaptation (note the different scales on the y-axes). It shows that when
the exploration algorithm is used, a node’s upload reaches its maximum up-
load capacity as shown in Table 1. This means that nodes in all categories fully
utilise their upload bandwidth. In contrast, when the exploration is not used,

148 R. Cunningham, B. Biskupski, and R. Meier

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000

av
er

ag
e

up
lo

ad
 r

at
e

(k
bp

s)

time (sec)

Node category A
Node category B
Node category C
Node category D

(a) Average upload rates with the exploration algo-
rithm

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000

av
er

ag
e

up
lo

ad
 r

at
e

(k
bp

s)

time (sec)

Node category A
Node category B
Node category C
Node category D

(b) Average upload rates without the exploration al-
gorithm

Fig. 2. Optimising average upload rates

Table 1. Node bandwidth distribution

Category Downlink Uplink Ratio

A 10 Mbps 5 Mbps 15%

B 3 Mbps 1 Mbps 25%

C 1.5 Mbps 384 Kbps 40%

D 784 Kbps 128 Kbps 20%

the upload bandwidth of nodes in the highest categories A and B is greatly un-
derutilised. It can be observed from these figures and the given node bandwidth
distribution that the total aggregated upload for adapted and not adapted over-
lays is about 550 Mbps and 260 Mbps respectively. This means that the upload
bandwidth utilisation is improved by over 100% when the overlay is adapted by
the exploration algorithm.

Managing Peer-to-Peer Live Streaming Applications 149

Table 2. Protocol parameters

Parameter Value

stream rate 1500 Kbps

number of senders 5

exploration round length 5 sec

chunk size 4 KB

pipelined requests 8

sliding window size 30 sec

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200 400 600 800 1000

av
er

ag
e

do
w

nl
oa

d
ra

te
 (

kb
ps

)

time (sec)

Node category A
Node category B
Node category C
Node category D

(a) Average throughput with the exploration algorithm

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000

av
er

ag
e

do
w

nl
oa

d
ra

te
 (

kb
ps

)

time (sec)

Node category A
Node category B
Node category C
Node category D

(b) Average throughput without the exploration algo-
rithm

Fig. 3. Improving the average throughput

4.2 Throughput

The improved utilisation of the upload bandwidth results in nodes increasing
their data throughput. Figure 3 compares the data rates with and without the

150 R. Cunningham, B. Biskupski, and R. Meier

exploration algorithm (note again the different scales on the y-axes). It shows
that the data rates received in the adapted overlay are all much higher than in
the case of a random mesh overlay. However, not only the upload bandwidth of
senders, but also a node’s own download capacity limits the received data rate.
So, for instance, the download rate of nodes in category D is limited by their
download bandwidth of 784 Kbps. Other node categories have higher download
capacity and thus achieve higher download rates. MeshTV accommodates lim-
ited download bandwidth of some nodes and different data rates received by
different node categories through the use of the Multiple Description Coding
(MDC) technique and specifically MDC-FEC [21]. The MDC technique enables
the original video stream to be split into a number of descriptions. A node can
download any subset of all descriptions to recreate the video stream.

4.3 Node Proximity

Figure 4 shows how the exploration algorithm reduces the network latency be-
tween interacting nodes. Initially, the random mesh overlay has an average la-
tency between neighbouring nodes roughly equal to 151ms as the latencies are
assigned randomly between 2ms and 300ms. Since senders allocate more upload
bandwidth to closer receivers, the overlay adapts, resulting in a reduction of the
average latency to about 75ms, which is a 50% improvement. The exploration
algorithm does not further reduce the distances between neighbouring nodes as
this might degrade the data throughput. Connecting exclusively to the nearest
senders implies two undesired effects. Nodes that share low-latency links with
many other nodes might be overloaded and the overlay might be divided into
disconnected clusters of nearby nodes. The exploration algorithm prevents these
unwanted effects as it improves proximity only when this does not degrade the
data throughput. This is because a high-latency underloaded node will provide
higher data throughput than a low-latency overloaded node and thus will be
preferred as a sender.

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0 200 400 600 800 1000

av
er

ag
e

la
te

nc
y

(m
s)

time (sec)

Fig. 4. Improving proximity of neighbours

Managing Peer-to-Peer Live Streaming Applications 151

5 Related Work

As would be expected from a number of research project solutions in the do-
main of p2p live streaming (such as Bullet [2], Splitstream [1], Chainsaw [3],
Coolstreaming [6] and MeshCast [7]) these solutions has focussed on the chal-
lenging distributed system problems of achieving low latency and robustness in
such a dynamic environment and not been on the management of streams or the
generation of revenue.

Most of these systems are mesh based with the exception of Splitstream which
uses a tree and Bullet which uses a hybrid approach of a tree for dissemination
of the stream and a mesh for retransmission of lost or dropped packets.

A number of the systems use a form of gossip in the construction of their un-
derlying topologies. For example, Bullet executes the RanSub algorithm [22] to
deliver a uniform random subset of peers to each peer in the system. Coolstream-
ing also uses a gossip protocol to achieve membership management. MeshCast
on the other hand uses a variant of the Newscast algorithm [12] to distribute a
sampling of the peers in the system. The use of bootstrapping is not stressed in
any of the descriptions of these systems though it is typically needed to enable
the correct functioning of each system in the presence of new peers joining and
existing peers departing.

Finally, a number of these systems attempt to model the communication ca-
pability of a neighbouring peer so that the overall system can better utilise
the bandwidth (typically upload bandwidth) at all nodes. Bullet builds on top
of TCP Friendly Rate Control [23] (with each peer periodically evaluating its
senders and receivers and dropping or replacing them if they do not provide
sufficient bandwidth to that peer. In coolstreaming, a peer estimates the per-
formance of its neighbours to guide the scheduling of requests for parts of the
stream. MeshCast also attempts to estimate its neighbouring peers upload ca-
pacity using its sender/receiver balancing algorithm.

6 Conclusions/Future Work

This paper described the MeshTV architecture which incorporates a set of ab-
stractions that are common to a number of existing live streaming systems. This
layered architecture divides these abstractions into three categories which have
been labelled coordination, management and communication. A realisation of
this architecture incorporating an existing p2p protocol was implemented in ns2.

Work is currently ongoing to provide an implementation of the MeshTV archi-
tecture (outside of the ns2 simulator) that incorporates one or more existing live
streaming systems. On completion, this will enable a further evaluation of our
architecture including the performance advantages and impact of using different
higher layer components such as the statistics managment component. It will
also be possible to investigate the performance impact on a set of peers that are
executing two or more live streaming systems (e.g., as part of a wireless access
point based home entertainment system hub).

152 R. Cunningham, B. Biskupski, and R. Meier

Acknowledgements

This work was partly funded by the “Information Society Technology” Pro-
gramme of the Commission of the European Union under research contract IST-
507953 (DBE) and by Enterprise Ireland under the Commercialisation Proof of
Concept Programme (MeshTV).

References

1. Castro, M., Drushel, P., Kermarrec, A., Nandi, A., Rowstron, A., Singh, A.: Split-
stream: High-Bandwidth Multicast in Cooperative Environments. In: SOSP (2003)

2. Kostic, D., Rodriguez, A., Albrecht, J., Vahdat, A.: Bullet: high bandwidth data
dissemination using an overlay mesh. In: Symposium on Operating System Princi-
ples (2003)

3. Pai, V.S., Kumar, K., Tamilmani, K., Sambamurthy, V.: Chainsaw: Eliminating
trees from overlay multicast. In: Castro, M., van Renesse, R. (eds.) IPTPS 2005.
LNCS, vol. 3640, pp. 127–140. Springer, Heidelberg (2005)

4. Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek, M.F., O’Toole, J.: Overcast:
Reliable multicasting with an overlay network. In: OSDI (2000)

5. Castro, M., Drushel, P., Kermarrec, A., Rowstron, A.: SCRIBE: A large-scale de-
centralised application level multicast infrastructure. IEEE JSAC, 1–9 (2002)

6. Zhang, X., Liu, J., Li, B., Yum, T.S.P.: Coolstreaming/donet: A data-driven overlay
network for peer-to-peer live media streaming (2005)

7. Biskupski, B., Cunningham, R., Dowling, J., Meier, R.: High-bandwidth mesh-
based overlay multicast in heterogeneous environments. In: AAA-IDEA 2006: Pro-
ceedings of the 2nd international workshop on Advanced architectures and algo-
rithms for internet delivery and applications, p. 4. ACM, New York (2006)

8. Hiclanan, K., Elgamal, T.: The SSL protocol. Internet draft, Netscape Communi-
cations Corp. Technical report (1995)

9. Kohl, J.T., Neuman, B.C.: The Kerberos network authentication service (V5).
Technical Report 1510 (1993)

10. Jelasity, M., Babaoglu, O.: T-man: Gossip-based overlay topology management. In:
3rd International Workshop on Engineering Self-Organising Applications (2005)

11. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: load balancing in
structured p2p systems. In: 2nd International Workshop on Peer-to-Peer Systems
(2003)

12. Jelasity, M., van Steen, M.: Large-scale newscast computing on the Internet. Tech-
nical Report IR-503, Department of Computer Science Vrije Universiteit, Amster-
dam, The Netherlands (2002)

13. Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation in large over-
lay networks. In: Proceedings of the 24th International Conference on Distributed
Computing Systems, pp. 102–109 (2004)

14. Jelasity, M., Montresor, A., Babaoglu, O.: Robust aggregation protocols for large-
scale overlay networks. In: International Conference on Dependable Systems and
Networks, pp. 19–28 (2004)

15. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate informa-
tion. In: 44th IEEE Symposium on Foundations of Computer Science, pp. 482–491
(2003)

Managing Peer-to-Peer Live Streaming Applications 153

16. Biskupski, B., Cunningham, R., Meier, R.: Improving throughput and node prox-
imity of p2p live video streaming through overlay adaptation. In: Proceedings of
the 9th IEEE International Symposium on Multimedia (ISM 2007), pp. 245–252.
IEEE Computer Society, Los Alamitos (2007)

17. Lakshman, T.V., Madhow, U.: The performance of TCP/IP for networks with
high bandwidth-delay products and random loss. IEEE/ACM Trans. Netw. 5(3),
336–350 (1997)

18. Jelasity, M., Guerraoui, R., Kermarrec, A.M., van Steen, M.: The peer sampling
service: experimental evaluation of unstructured gossip-based implementations. In:
Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 79–98. Springer, New
York (2004)

19. McCanne, S., Floyd, S.: ns—Network Simulator, http://www.isi.edu/nsnam/ns
20. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer

file sharing systems. In: Proceedings of Multimedia Computing and Networking
(2002)

21. Goyal, V.K.: Multiple description coding: Compression meets the network. IEEE
Signal Processing Magazine 18(5), 74–93 (2001)

22. Kostic, D., Rodriguez, A., Albrecht, J., Bhirud, A., Vahdat, A.: Using random sub-
sets to build scalable network services. In: Proceedings of 4th USENIX Symposium
on Internet Technologies and Systems (USITS) (2003)

23. Floyd, S., Handley, M., Padhye, J., Widmer, J.: Equation-based congestion control
for unicast applications. In: SIGCOMM 2000, Stockholm, Sweden, August 2000,
pp. 43–56 (2000)

http://www.isi.edu/nsnam/ns

Dynamic Adaptability for Smart Environments

Daniel Retkowitz and Mark Stegelmann

Department of Computer Science 3 (Software Engineering)
RWTH Aachen University

Ahornstr. 55, 52074 Aachen, Germany
{retkowitz,stegelmann}@i3.informatik.rwth-aachen.de

Abstract. Software reuse and hardware integration are key factors to
offer flexible, low-cost smart environments. Until now, we have been us-
ing a static process called the SCD-process to allow a tool-supported
realization of such smart environments. The SCD-process is comprised
of three different phases: specification, configuration, and deployment.
As an initially specified environment is expected to change during run-
time and the user may wish to influence certain aspects of the config-
uration, the static process had to be adapted. This paper describes a
new process that supports continuous specification activities and allows
for an automated adaptation of the smart home’s configuration based on
a model-driven approach. We enriched the specification of services with
binding policies and constraints to allow for a flexible reconfiguration
and a service-specific adaptation. The new configuration mechanism fa-
cilitates dynamic reconfiguration based on context information and the
extended service specification. In addition, we present a visual tool, which
is used to assist the developer and the end-user.

1 Introduction

Ambient intelligence, ubiquitous and pervasive computing, are some of the more
recent topics in computer science. Approaches in these fields aim at creating so
called smart environments by separating computing from today’s desktop PCs
to make applications and their functionalities available anywhere, independent
of PC hardware [1]. This way, users can access services wherever they are. Any
available device should be usable to realize service functionality. Devices installed
in the user’s current environment, together with mobile or wearable devices may
be used by the software.

Related to home environments, ambient intelligence is realized by so called
eHomes or smart homes. We refer to eHome systems as a combination of de-
vices and software running in such an eHome. This software is running on a
residential gateway that controls all home appliances. Top-level services are ap-
plications that offer certain functionalities to the user. Top-level services are
based on integrating services that reduce the level of abstraction down to device
driver services, which control actual hardware devices. In today’s homes, a lot of
appliances are available, but in general, these appliances are not interconnected.

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 154–167, 2008.
c© IFIP International Federation for Information Processing 2008

Dynamic Adaptability for Smart Environments 155

To facilitate comprehensive services based on multiple appliances, that offer com-
plex functionalities, it is necessary to develop flexible and adaptive software. To
achieve this goal at low overall costs, the eHome software has to be built from
standard components, that are automatically composed according to the user’s
needs and the individual home environment.

The goal of our research is to enable such low-cost eHome systems by compos-
ing eHome services from reusable software components. In our prototypes these
software components are developed according to the OSGi component model [2].
We currently employ the Equinox framework of the Eclipse platform [3] as an
OSGi runtime environment for our service bundles, as the components in OSGi
are called. The customization of the eHome software is achieved later on by
composition of the services in a process of specification, configuration, and de-
ployment. This process is called the SCD-process [4].

In [4], a tool called eHomeConfigurator is presented, which enables the SCD-
process by employing a model-driven approach based on Fujaba. Fujaba is a
tool for specifying a software’s data model and application logic using different
UML diagrams [5]. Furthermore, it allows to generate Java source code from
such a specification. In this paper, we present a redesigned SCD-process, which
is capable of handling the dynamics in smart environments and incorporates
several major improvements. We also present a newly developed tool based on
the Ecliplse platform mentioned above.

The rest of the paper is structured as follows. In Section 2 we describe a
scenario to illustrate the need for a support of dynamic changes in smart envi-
ronments. Next, in Section 3, we explain the different concepts which form the
basis of the new continuous SCD-process. After that, in Section 4, we discuss
the realization details and we show how we implemented the new concepts. Then
we present the current state of our new tool in Section 5. In the following Sec-
tion 6, a short overview of related work is given. Finally, in Section 7, we give a
conclusion and point out some open problems and future work.

2 Scenario

Before discussing the details of our system architecture, we will take a closer
look at an example scenario. We will see that changes appear frequently in smart
environments, which imposes certain requirements on the SCD-process.

John is coming home from work. At home, he sits down in his living room.
Since he has a music service selected in his personal profile, his favorite music
starts playing when he enters the room. After some time he walks into the kitchen
to prepare some food. The music in the living room stops playing when John
leaves the room. Once he enters the kitchen, his new location is detected by
the eHome and the music service starts playing John’s music again in his new
location using the speakers integrated in the kitchen wall. The music service
resumes playing from the last position where John was listening in the living
room. A few minutes later John’s wife Mary comes home, too. When she walks
through the living room, her personal video conferencing service notifies her

156 D. Retkowitz and M. Stegelmann

about an incoming call from Anne. She takes the call and a live picture of Anne
appears on the TV. She can hear Anne’s voice from the speakers in the living
room. Anne talks about their last joint vacation and wants to show Mary some of
the pictures she took. Mary’s video conferencing service is capable of presenting
different media data. Using her PDA, Mary selects the TV to display Anne’s
picture presentation. The pictures appear on the TV and the live picture of
Anne is reduced and displayed in the lower corner of the screen. Mary wants
John, who is still in the kitchen, to see the pictures too. So she adds the display
in the kitchen to be used for media data output of her video conferencing service.
Now the picture presentation is also displayed in the kitchen. After Mary has
seen several pictures she decides to create prints of some of them. So she picks
up her PDA again and connects the printer in the living room to her video
conferencing service. The printer is also capable of processing visual media data
and starts printing the selected pictures.

This example scenario shows some standard situations we assume in future
smart environments. To design a software system that is sufficiently flexible and
adaptable to support such scenarios, we had to come up with a novel development
process. In the next section we will describe our approach based on a modified
SCD-process in more detail.

3 System Architecture

The SCD-process as described in [4] aims at reducing development costs per
eHome by increasing the amount of possible service reuse. Thus services are de-
veloped once and enriched with a specification. This allows for a later automatic
integration of the services into different eHome configurations. The service spec-
ification describes which functionality each service provides to other services and
which functionality is required to do so.

3.1 Service Layers

We distinguish between three types of services: driver, integrating, and top-level
services. Driver services represent low-level driver software needed to access the
different hardware devices. Top-level services are applications that offer func-
tionality to the user. So called integrating services may be used to add multiple
layers of abstraction to the basic, driver-based hardware access. In many cases
the functionality that is required by a top-level service does not directly match
a functionality provided by a driver service, because both services are on very
different layers of abstraction. In such cases adequate integrating services have
to be found to adapt both layers to each other.

In Figure 1 the three types of services are shown by the example of the video
conferencing scenario from Section 2. In Figure 1(a) the Video Conferencing top-
level service is depicted, which requires several functionalities as Audio Input,
Audio Output, etc. to operate properly. For each required functionality the car-
dinality shows how many instances of this functionality are required at least

Dynamic Adaptability for Smart Environments 157

Video Conferencing

Video OutputVisual Media
OutputTelephony

requires 0..1
requires 0..n

requires 1..1

Audio Output

requires 1..n

Audio Input

requires 1..1

(a) Top-level

VoIP

Telephony

Internet Access

requires 1..1

provides 1

(b) Integrating

DSL Modem driver

Internet Access

provides n

TV Set driver

Visual Media
Output

provides 1

DSL ModemTV Set

controlscontrols

Video Output Audio Output

provides 1provides 1

(c) Driver

Fig. 1. Service Layers

and at most. Figure 1(b) shows an integrating service. In this example the de-
picted VoIP service is used for voice over IP telephony. Accordingly it provides
Telephony functionality and furthermore requires Internet Access, since network
access is required. Finally, in Figure 1(c) two driver services are depicted. A DSL
Modem Driver which provides Internet Access and a TV Set Driver which offers
Visual Media Output, Video Output, and Audio Output.

Any service used in the eHome system is specified as indicated above. This
way, services can be composed by the system later on in the configuration phase
according to their specified functionalities. In the described example the Video
Conferencing service may use the VoIP service to fulfill its Telephony requirement.
The VoIP service in turn may use the DSL Modem Driver to fulfill its Internet
Access requirement.

3.2 Process Requirements

An automatic support for the SCD-process is one of the main requirements for
the application of eHome services. The user will not accept a system that requires
permanent interaction. Most of the tasks have to be performed automatically.
Ambient intelligence implies that the environment acts and reacts automatically
according to context changes. Nevertheless, the user permanently wants to be
in control of the situation, i. e. the system must not act in a way the user does
not expect. In case the system makes a decision the user does not agree with,
it should be possible to manually apply changes so that the user has means to

158 D. Retkowitz and M. Stegelmann

influence the system’s behavior. Especially when considering home environments,
these are key issues for the acceptance of eHome systems.

3.3 Continuous SCD-Process

As we have seen in Section 2, the nature of dynamics at runtime of an eHome
system can be quite diverse. To cope with the described dynamics, we redesigned
the SCD-process described in [4] to meet the new requirements discussed above.
Our approach focuses on considering runtime changes concerning user move-
ment through different locations and device mobility. Whenever changes occur
in the eHome environment, the different phases of the SCD-process have to
be re-executed to adapt the software to the new situation. Any change of the
user’s location or desires or any change of available devices implies corresponding
changes in the specification and hence also the configuration and the deployment.
We refer to the new adapted process as continuous SCD-process.

To facilitate an automated adaption of the eHome system to context changes,
the availability of certain sensor devices that allow to detect these changes is
required. The scenario presented above requires e. g. some means of automated
person and device detection. The demonstration environments described in [4]
and [6], which we use as testbeds, provide these capabilities e. g. by means of
video cameras or remote controls for the different users to log in. We assume
that appropriate technologies will be available for future eHomes at low prices.

In Figure 2, the new overall eHome process is illustrated. On the left-hand
side of the figure the service-specific part is depicted. This part consists of the
service development phase and the phase of service specification. These phases
are performed by a software developer. The resulting service components can be
used in any eHome based on our framework.

The right-hand side of Figure 2 depicts the eHome-specific part of the overall
process, i. e. the SCD-process which represents the runtime phase of the sys-
tem. For each eHome the SCD-process demands a specification of floor plans,

Continuous SCD-process
(eHome-specific)

Product Development
(service-specific)

Adaptive
Specification

(Re-)Configuration

Differential
Deployment

Specification
(extended)

Development
Execution

Fig. 2. Overall process incorporating the new continuous SCD-process

Dynamic Adaptability for Smart Environments 159

the desired top-level services, and the available devices. This is the specifica-
tion phase of the SCD-process. The division into two independent specification
phases, the product-specific service specification and the eHome-specific specifi-
cation, allows to minimize the expert knowledge required by the end-user. After
the eHome-specific specification phase the configuration phase follows next. In
this phase any changes of the specification are processed and a recomposition
of services according to their provided and required functionalities is performed.
Depending on the service specification the composition is performed automati-
cally or manually. In case a service requires manual binding, so far the user has
to create the appropriate bindings in the graphical service representation of the
visual specification tool described in Section 5 in order to start the service. In
the future, this way of interaction could be extended e. g. by offering a graphical
user interface for PDAs such that users can carry PDAs as remote controls for
their current environments. Furthermore composition constraints are checked to
keep the configuration valid. In Section 4, further details on the configuration
algorithm are presented. Finally, when the eHome software has been configured,
the configuration has to be deployed. In the deployment phase service instances
are created or destroyed according to the configuration and the bindings between
these instances are registered.

4 Realization

As described in [7] we pursue a model-driven approach to realize eHome systems.
Our data model, which is partially shown in Figure 3, is specified as UML class
diagram. The runtime behavior of our framework is described using so called
UML story diagrams to express the configuration logic. All defined classes and
methods are translated to compilable Java source code via Fujaba. Thus no
actual configuration code has to be written by hand.

0..1

0..n

correspondingFunction

0..n

matchedFunction

0..1

0..n

controls

0..n 1

is instanciated as

0..1

0..1

controls

0..n

1

contains

0..n 1

is instanciated as

1

0..n

is in

1

1

bindingPolicy

n

1

constraint

BindingConstraint

0..n

Service

0..1

correspondingCardinality

BindingPolicy

1= Integer: lowerLimit

RequiredServiceFunctionCardinality

1 = Integer : upperLimit

-1 = Integer : UNLIMITED

ServiceFunctionCardinality

ProvidedServiceFunctionCardinality

0..1

0..n

used

0..n

0..1

uses

ServiceObject

EnvironmentElement

0..1

0..n
refines

0..1
Function

ServiceObjectConnectionProperties

Device DeviceDefinition

Fig. 3. Part of the data model UML class diagram

160 D. Retkowitz and M. Stegelmann

4.1 Data Model

In the data model, Services are used to represent the eHome-independent
service specifications. These services are linked through ServiceFunctionCar-
dinality objects to Functions. The RequiredServiceFunctionCardinality
objects express that the service requires some functionality. ProvidedService-
FunctionCardinality objects respectively mean that the service provides some
functionality. Furthermore, lower and upper cardinality bounds are stored,
whereas lower bounds are only used for required functionalities. A driver ser-
vice additionally controls a specific DeviceDefinition.

During the eHome-specific configuration phase the specified required and
provided functionalities are used to match services. This way the needed ser-
vice runtime instances called ServiceObjects can be determined. To connect
two of these ServiceObjects, ServiceObjectConnectionProperties are used.
Top-level ServiceObjects, selected by the user, are contained in Environ-
mentElements thereby describing the ServiceObject’s location. Context-aware
[8] or so-called personal services, adapt to the user’s context, e. g. his surround-
ings. Such ServiceObjects thus are always associated to their user’s current
location.

4.2 Dynamic Service Composition

The continuous nature of the new process requires some way to determine which
match a connection between two ServiceObjects is based on. This information
is stored in the model by the matchedFunction relation from ServiceObject-
ConnectionProperties to Function. Thus it is feasible to extend and respec-
tively reduce prior compositions of ServiceObjects according to the service’s
specification.

ServiceObject

ServiceObject

Device

controls

EnvironmentElement

is instanciated in

◀
co

nta
ins

ServiceObject(s)

Video Conferencing

Audio Output

requires 1..1
EnvironmentElementBindingConstraint

Service Specification Service Configuration

Audio Output Binding

EnvironmentElementBindingConstraint

Fig. 4. Abstract visualization of a binding constraint

Dynamic Adaptability for Smart Environments 161

Binding Policies. To specify for each required functionality if it should be
bound automatically or manually by the user, so-called binding policies were
introduced.

A binding policy constitutes a strategy concerning the establishment of bind-
ings for a specific Function required by a Service. We offer three types of
policies covering different configuration strategies. The automatic binding policy
manages all bindings to services providing the required function automatically.
The manual binding policy, in contrast, only allows manual binding modifica-
tions. To automatically establish bindings until the lower cardinality limit is
reached and allow manual interaction beyond that point, an automatic manda-
tories policy can be selected.

Binding Constraints. To implement a flexible concept of fine-grained, context-
aware services, binding constraints were introduced. We call a binding constraint
a declarative description of a graph pattern that has to be matched in the con-
figuration in order to establish the binding. If the configuration graph conforms
to the pattern the binding constraint is satisfied.

Realizing a constraint for personal services is straightforward. The data model
contains all information necessary for such a pattern. An abstract visualization
of the constraint is shown in Figure 4. The binding constraint is satisfied if all
Devices that are used via the Audio Output binding are from the user’s current
location. As constraints are specified for each required Function separately the
developer may choose to omit this restriction for some functionality that does
not have to be chosen from the user’s current location. Telephony support e. g.
typically does not have to be located in the same room as the user, even for
personal services. This kind of supporting services are usually not bound to a
specific location.

Binding constraints are a fundamental concept within our approach. They can
be used to impose various effects on the dynamic composition mechanism. We
will extend this concept in the future to support further context-aware features.

4.3 Adaptive Configuration

To incorporate environment specification changes as discussed in Section 3 the
possibility to choose from different binding policies was introduced. As shown in
Figure 3, each BindingPolicy object is related to a certain RequiredService-
FunctionCardinality. These objects in turn are bound to a Function. Thus
this information can be easily derived by the binding policies’ implementations.

In Figure 5 an excerpt of the method addBinding(ServiceObject) is shown.
This method is responsible for the automatic creation of bindings between Ser-
viceObjects and is used by the automatic binding policy and by the automatic
mandatories policy. The particular method fragment depicted creates bindings
to existing service compositions that may provide the specified function. In the
topmost activity, being a so-called for-each activity, candidate ServiceObjects
meeting this requirement are determined. For this purpose, first those Services
that according to their specification may offer function are ascertained. Then

162 D. Retkowitz and M. Stegelmann

is instanciated as

correspondingFunctionmanages

serviceRoot function

Service:providingService

}provSO.isValid(){

ServiceObject:provSO

}provSO.providedInstancesLeft(function) > 0 || provSO.providedInstancesLeft(function) == ServiceFunctionCardinality.UNLIMITED{

ProvidedServiceFunctionCardinality:provCardcorrespondingCardinality

// for each valid, instantiated Service (hence: valid ServiceObject) that still does provide instances of function

]success[]failure[

]end[

]else[

]props.allConstraintsSatisfied()[

]each time[

«create»
matchedFunction

«create»
used

«create»
usesserviceObject

function

«create»

ServiceObjectConnectionProperties:props

provSO

// test if using this ServiceObject would violate a constraint

correspondingFunction

RequiredServiceFunctionCardinality:requiresservice

function

}serviceObject.connectedInstances(function) == requires.getLowerLimit(){

correspondingCardinality

// check if this did cross the validity border (added the last mandatory binding)

«destroy»

props

// this connection did not work out

Fig. 5. Activity diagram fragment of addBinding(ServiceObject)

each provSO object that is an object of such a service is examined if it is valid and
is able to provide an instance of the required function. As some functionality
required by a ServiceObject may be unavailable at times, a ServiceObject
does not always have to be valid. We define a ServiceObject to be valid if
all mandatory required functionality is provided by ServiceObjects that are
valid themselves and all binding constraints for connections between the Ser-
viceObjects are satisfied. To check the latter, the binding has to be established,
as BindingConstraints are defined for existing configuration graphs. Thus for
each of the found provSOs a ServiceObjectConnectionProperties object is
created in the left activity below. This object indicates that provSO is used to
provide function. If at least one binding constraint is violated the binding is
destroyed in the activity to the right and the next provSO is determined in

Dynamic Adaptability for Smart Environments 163

the topmost activity. Execution continues with the bottommost activity if all
constraints are satisfied. If the connection did add the last mandatory binding
the ServiceObject’s validity may have changed. The validity is thus reevalu-
ated. Else the method ends as a binding was added by the policy. If none of
the existing ServiceObjects qualifies as provider for the required Function the
left arrow marked with end is followed. The method continues by creating new
ServiceObjects of Services that may provide the function.

5 Tool Support

To provide tool support for the continuous SCD-process we created a visual spec-
ification tool (cf. Figure 6). We chose the Eclipse Graphical Editing Framework
(GEF) for implementing the user interface. GEF [9] is a framework focusing on
providing an easy way to build Eclipse-based graphical editors for existing mod-
els. As Fujaba is able to generate code for our model and the configuration logic,
GEF was a natural choice for realizing the tool.

The Service Editor shown in the left screenshot of the figure is used by the
service developer. Here services, functions, device definitions, and their rela-
tions can be modeled as described in Section 4. In the right screenshot the

Fig. 6. Screenshots of the visual specification tool

164 D. Retkowitz and M. Stegelmann

Environment Editor is depicted. It is used for the specification phase of the
continuous SCD-process. Environments and locations can be created to specify
floor plans. Afterwards, the hardware devices may be placed and desired top-
level services can be selected and associated to the prior defined locations. The
tool palette of the Service Editor allows users to specify what service objects
should be used as personal services and what devices they currently carry. To
manually link service objects to each other or to some devices the user may also
use the tool palette. After each change in the editor the configuration code is
executed to reconfigure the runtime graph accordingly. The amount of required
user interaction can be reduced if person and device detection and localization
is available. Corresponding context changes can then be automatically detected.
For the future we plan to integrate user profiles, such that desired services can
be automatically inferred from the profile data.

The Service Editor depicts the service specifications for the scenario detailed
in Section 2. Each service is specified along with its required and provided func-
tions. In addition, driver services are linked to their respective devices. Binding
policies and binding constraints can be chosen for each required functionality.
This is shown in the properties view visible at the bottom of the left screenshot.

The right screenshot visualizes the configuration at the end of the example
scenario. Mary resides in the living room. John is in the kitchen. The compo-
sition is a result of the successive environment changes and the user-generated
specification changes described.

6 Related Work

As mentioned before there is a lot of research activity going on in the field of am-
bient intelligence and the related topics. Some of this research focuses on smart
environments. Nevertheless there are numerous other areas of application. Re-
lated to software engineering, the concepts of software components and services
are addressed frequently.

In [10], Cervantes and Hall discuss the concepts of service and component ori-
entation and a service-oriented component model which is used in their project,
called Gravity. The authors’ initial goal, which is detailed in [11], is to provide an
automatic service dependency management framework for user-oriented appli-
cations. As these applications are composed of services that continuously arrive
or depart during runtime, the applications constantly have to be reassembled.
Gravity allows to eliminate dependency management code needed to deal with
such compositional issues using a tool called Service Binder. The Service Binder
prototype is realized for the OSGi framework. Using XML descriptors similar
to our service specifications each OSGi component is enriched with meta-data
descriptions of its required and provided services. Cardinalities and static or dy-
namic policies can be specified to define the runtime reconfiguration behavior.
The continuous SCD-process, we described in this paper, also aims at dynamic
recomposition. Yet, the composition behavior defined by binding policies and
binding constraints differs from the policies of the Gravity project. In contrast

Dynamic Adaptability for Smart Environments 165

to our approach, no means of user interaction are provided by Gravity. This is an
important aspect of our approach as the user has to be in control of the system
even if the process should be executed as automated as possible. For each com-
ponent instance the Service Binder creates instance managers that locally try
to maintain the instance’s validity according to the respective instance descrip-
tor. In contrast, our graph-based approach relies on a centralized composition
mechanism that may leverage local as well as global context information. This
includes locations of persons, services, and devices. Context-restrictions based
on the model may be described as binding constraints.

In [12], Botarro and Gérodolle describe several extensions to the original Ser-
vice Binder addressing some of its limitations, like service selection ambiguity
for equivalent service providers, support for context-awareness, and remote dis-
tribution of services. The Extended Service Binder introduces service provider
rankings based on dynamic properties and transparent service access to remote
services to the original concept. At the moment, we are exploring approaches that
may help reducing selection ambiguity based on semantic service description.

In [13,14], Broens et al. propose a middleware called Context-Aware Com-
ponent Infrastructure (CACI) that allows transparent binding management for
personalized mobile component-based applications. The authors distinguish be-
tween context producing entities (e. g. GPS receivers, RFID beacons) and context
consuming entities (e. g. context-aware applications). Bindings between these are
called context bindings, and they are established dynamically and maintained at
runtime. Using the CACI Component Description Language (CCDL), develop-
ers may define which context bindings are required by their application. Every
context binding is specified with several parameters including a binding policy.
The policy may be set to be either dynamic, semi-dynamic, or static. A dynamic
policy indicates that the binding is to be updated if better context producers be-
come available at runtime. Semi-static context bindings are only replaced if the
context producer gets unavailable. Static bindings are only bound once. Com-
pared to our binding specification approach CCDL lacks the possibility to specify
if a context producing entity should be bound automatically or if user interaction
is desired. In fact, no manual modifications can be applied by the user. No tool
is provided for visualization and interaction.

In [15], the authors present an approach to behavioral service composition
that is based on semantic web services. The user’s needs are specified as so
called abstract user tasks. Abstract user tasks do not refer to actual component
instances. To realize these tasks, a matching algorithm is applied to compose
semantic web services, which implement a certain behavior. Both abstract user
tasks and semantic web services are specified as OWL-S processes. These process
definitions are modeled as finite state automata, which are used by the match-
ing algorithm to reconstruct the abstract user tasks based on available service
behavior. In our approach, we do not consider service behavior to perform the
matching. Instead we focus on context information, user interaction, and espe-
cially the reconfigurability of service compositions. In the approach discussed
above, no reconfiguration issues are addressed.

166 D. Retkowitz and M. Stegelmann

7 Conclusion and Outlook

Smart homes require flexible and adaptive software composed from standard
components. To offer smart home software to end-users at a reasonable price,
the individual eHome-specific software is composed from these components at
runtime. Service composition is a complex task, which has to be solved by a
service gateway capable of managing, running, and adapting compositions au-
tomatically. If the end-user is bothered with technical configuration tasks in
everyday life, smart homes will not be accepted by the general public. However,
users want to be in control of their environments. Therefore, complementary
means of user interaction have to be offered.

In this paper we described a dynamic process for composing standard service
components, such that the resulting compositions meet the individual require-
ments for specific eHomes. The continuous SCD-process is capable of handling
the dynamics occurring during runtime of eHome systems. To automate service
composition, a detailed service specification has to be provided. We achieve this
by specifying binding policies and binding constraints. This allows the service
developer to define an adequate composition behavior for each specific service.
We described a dynamic reconfiguration mechanism and how we implemented
the according algorithm in a model-driven approach. Finally, we gave a short
overview of a new tool supporting the eHome development process.

Currently, we are adapting the final deployment phase of the SCD-process to
connect our tool to the eHomeSimulator [6], which is a virtual eHome environ-
ment we use as a testbed. This enables us to simulate environments containing
numerous different devices and to evaluate more complex scenarios and the dy-
namic behavior at runtime. So far, preliminary tests indicate that the adaptive
recomposition at runtime does not produce any significant performance over-
head in comparison to the prior static approach used in [4]. In the near future,
we will carry out a more extensive performance analysis to evaluate complex
scenarios with a larger number of simultaneous users. We currently also work
on further extensions of the service specification. Especially the specification of
service functionalities using semantic labels is to be extended, to better support
the matching algorithm and to allow for a more flexible service composition in
heterogeneous environments. Other future extensions could be automated sup-
port for conflict resolution, optimization of the global configuration with respect
to resource usage or other parameters, and also support for service versioning
and updating at runtime.

References

1. Weiser, M.: The Computer for the 21st Century. Scientific American 265(3), 66–75
(1991)

2. The OSGi Alliance: OSGi Service Platform Core Specification. Release 4 (August
2005), http://www.osgi.org/osgi_technology/download_specs.asp#Release4

3. des Rivières, J., Wiegand, J.: Eclipse: A platform for integrating development tools.
IBM Systems Journal 43(2), 371–383 (2004)

http://www.osgi.org/osgi_technology/download_specs.asp#Release4

Dynamic Adaptability for Smart Environments 167

4. Norbisrath, U., Mosler, C.: Functionality Configuration for eHome Systems. In:
Proceedings of the 16th International Conference on Computer Science and Soft-
ware Engineering, CASCON 2006, ACM Digital Library (2006)

5. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph
Rewrite Language based on the UnifiedModeling Language. In:Ehrig, H., Engels, G.,
Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309.
Springer, Heidelberg (2000)

6. Armac, I., Retkowitz, D.: Simulation of Smart Environments. In: Proceedings of
the IEEE International Conference on Pervasive Services 2007 (ICPS 2007), pp.
257–266. IEEE Press, Los Alamitos (2007)

7. Norbisrath, U., Armac, I., Retkowitz, D., Salumaa, P.: Modeling eHome systems.
In: MPAC 2006: Proceedings of the 4th International Workshop on Middleware for
Pervasive and Ad-Hoc Computing (MPAC 2006), 6 pages. ACM Press, New York
(2006)

8. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards
a Better Understanding of Context and Context-Awareness. In: Gellersen, H.-W.
(ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)

9. Moore, B., Dean, D., Gerber, A., Wagenknecht, G., Vanderheyden, P.: Eclipse
Development using the Graphical Editing Framework and the Eclipse Modeling
Framework, 1st edn. IBM (Redbooks) (February 2004)

10. Cervantes, H., Hall, R.S.: Automating Service Dependency Management in a
Service-Oriented Component Model. In: Crnkovic, I., Schmidt, H., Stafford, J.,
Wallnau, K. (eds.) Proceedings of the 6th ICSE Workshop on Component-Based
Software Engineering (CBSE6), pp. 379–382 (May 2003)

11. Hall, R.S., Cervantes, H.: Gravity: supporting dynamically available services in
client-side applications. In: ESEC/FSE-11: Proceedings of the 9th European Soft-
ware Engineering Conference held jointly with 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 379–382. ACM Press,
New York (2003)

12. Bottaro, A., Gérodolle, A.: Extended Service Binder: Dynamic Service Availability
Management in Ambient Intelligence. In: FRCSS 2006: Future Research Challenges
for Software and Service (April 2006)

13. Broens, T.H.F., van Halteren, A.T., van Sinderen, M.J.: Infrastructural Support for
Dynamic Context Bindings. In: Havinga, P., Lijding, M., Meratnia, N., Wegdam,
M. (eds.) EuroSSC 2006. LNCS, vol. 4272, pp. 82–97. Springer, Heidelberg (2006)

14. Broens, T.H.F., Quartel, D.A.C., van Sinderen, M.J.: Towards a Context Binding
Transparency. In: Pras, A., van Sinderen, M. (eds.) EUNICE 2007. LNCS, vol. 4606,
pp. 9–16. Springer, Heidelberg (2007)

15. Mokhtar, S.B., Georgantas, N., Issarny, V.: Ad Hoc Composition of User Tasks in
Pervasive Computing Environments. In: Gschwind, T., Aßmann, U., Nierstrasz, O.
(eds.) SC 2005. LNCS, vol. 3628, pp. 31–46. Springer, Heidelberg (2005)

Brokering Planning Metadata in a P2P Environment

Johannes Oudenstad1, Romain Rouvoy2, Frank Eliassen2,3, and Eli Gjørven3

1 Norwegian Defence Research Establishment
P.O. Box 25, N-2027 Kjeller

johannes.oudenstad@ffi.no
2 University of Oslo, Department of Informatics

P.O. Box 1080 Blindern, N-0314 Oslo
{rouvoy,frank}@ifi.uio.no

3 Simula Research Laboratory
P.O.Box 134, N-1325 Lysaker

eligj@simula.no

Abstract. In self-adaptive systems, metadata about resources in the system (e.g.,
services, nodes) must be dynamically published, updated, and discarded. Current
adaptive middleware approaches use statically configured, centralized reposito-
ries for storing and retrieving of such metadata. In peer-to-peer (P2P) environ-
ments, we can not assume the existence of server nodes that are always available
for hosting such centralized services. However, the metadata repository is the
keystone of the adaptation middleware and the consistency of adaptations relies
on its reliability.

To address this limitation in our QuA planning-based adaptation middleware,
we introduce a P2P broker, which is a metadata advertisement service based
on P2P technology. This P2P broker can be plugged into the QuA middleware
to support the construction of self-adaptive applications in a P2P environment.
We use a structured P2P protocol that distributes the service metadata over a
set of nodes based on service type and property information. The P2P broker is
therefore capable of handling node failures by providing replication of the meta-
data. We present a working prototype of the P2P broker as well as results from
initial experiments. These results show that the metadata distributes well over
the nodes in the network, thus enabling scalability and robustness to node failures.

Keywords: Peer-to-peer systems, resource brokering, self-adaptive middleware,
service planning.

1 Introduction

As computing systems become larger and more complex, the idea of self-adapting
systems is spreading to many areas of computing and communication, such as multi-
media applications, mobile applications, advanced communication protocols, and man-
agement of low level operating system resources. In particular, a self-adapting system
is able to reason about itself at run-time and, when necessary, to make changes to itself
in order to better satisfy the current environment requirements. However, while dis-
tributed applications traditionally were built from client-server architectures, many cur-
rent distributed applications are now built from peer-to-peer (P2P) architectures. These

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 168–181, 2008.
c© IFIP International Federation for Information Processing 2008

Brokering Planning Metadata in a P2P Environment 169

systems consist of equal, autonomous peers entering an application when suitable for
themselves, and then generally leaving without warning. Generally, approaches to adap-
tation middleware assume the existence of server nodes that can be expected to almost
always be available, and in particular to be continuously available for long periods of
time. As these approaches do not fit the P2P paradigm, we investigate self-adaptive mid-
dleware that is able to exploit other types of architectures at the middleware level. Thus,
this paper contributes to the integration of component- and planning-based adaptation
middleware in a P2P environment.

In this paper, we focus on the problem of dynamically locating metadata about re-
sources, such as services, nodes, in the system as they become available in the network.
We present the design of a resource broker based on a P2P infrastructure, and describe
how this broker is used by our planning-based adaptation middleware QuA [1]. In the
QuA middleware, adaptation is driven by metadata associated to services (e.g., service
performance or cost). Thus, the middleware aims at providing the best possible Quality
of Service (QoS) to users under variable execution contexts. However, this adaptation
requires quick and simple means to query for metadata in the system. And, existing
approaches to resource discovery, such as Twine [2], do not satisfy our requirements as
they do not provide the strong association of types to resources, as required in the QuA
middleware. Therefore, we propose to achieve this task with our P2P broker, which ex-
ploits diverse connectivity between participants in a network and the cumulative band-
width of network participants. Using a P2P infrastructure, we benefit from the seamless
distribution of the metadata across the network nodes to improve the planning process-
ing performance. Thus, a main challenge for the design of the P2P broker is to find a
mapping from the metadata associated to services with the goal of obtaining an even
distribution over P2P nodes. Besides, the replication of metadata using the P2P net-
work ensures the metadata high-availability in terms of access time, fault tolerance, and
network participants connectivity.

In the remainder of the paper, we introduce the QuA planning middleware
(cf. Section 2), and we discuss related work in the domain of resource brokering
(cf. Section 3). Then, we present the design of our P2P broker for the QuA planning mid-
dleware (cf. Section 4), and an evaluation of its performances (cf. Section 5). Finally, we
discuss the perspectives of this work before concluding (cf. Section 6).

2 Foundations of the QuA Planning Middleware

The QuA middleware [1] supports planning-based adaptation, which means that appli-
cations are specified by their behavior, and are planned, instantiated, and maintained by
the middleware in such a way that the behavioral requirements are satisfied throughout
the application life-time.

Central to this middleware is mirror-based service reflection [3], which supports
introspection and intercession on a service through all the phases of its life-cycle, in-
cluding pre-runtime. Each service is represented by a service mirror, which is an object
reflecting the service behavior (known as service type) and its implementation (known
as blueprint). Each service mirror has a map of <name,value> property pairs, where the
list of property types allowed in the map is determined by the QuA type specified by the

170 J. Oudenstad et al.

service mirror. The property type determines the value range of a property of that type
and the matching operators that can be applied for filtering service mirrors. Thus, the
task of service planning consists in planning the initial configuration or the dynamic re-
configuration of a service. The planner is responsible for evaluating alternative service
mirrors in order to find and select the service implementation with the highest util-
ity that satisfies both the functional and qualitative specifications of a service request.
Service mirrors can be advertised to and obtained from a pluggable middleware broker
service. The QuA broker is a trader-based discovery service. The resources traded in the
broker are the service mirrors discussed above. Component and application developers
alike must advertise the service mirrors to the broker. The broker has a responsibility of
hosting all the service mirrors advertised in a repository. In the service planning phase,
the planner asks the broker for service mirrors matching a type description and property
constraints (if any), and the broker is responsible of returning the service mirrors that
match the description.

An instance of the QuA platform consists of a small core that may be extended
with specialized, domain-specific services. A QuA capsule represents the local runtime
environment that a QuA platform instance depends on. A capsule hosts one or more
repositories, where blueprints referred to by service mirrors can be stored and retrieved.
Capsules themselves are advertised as service mirrors, and can be discovered by service
planners looking for nodes to interpret QuA blueprints and instantiate services from it.
For this purpose, each blueprint specifies a dependency to the required type of QuA
platform, such as a QuA:Java or QuA:Smalltalk platforms.

Thus, a challenge for the design of the P2P broker is to map service mirrors to P2P
nodes, and to provide efficient filtering both on type of functionality and properties.

3 Related Work

The discovery of metadata in QuA is based on required service types and potentially
required static properties of implementations of those service types. We limit the dis-
cussion of related work to resource discovery approaches similar to that of QuA—i.e.,
resource discovery through some form of marketplace often referred to as a trader or a
broker. We therefore focus on systems where resources are traded based on type con-
formance and matching of properties.

Two representative systems for resource discovery that are similar to the approach of
QuA are Jini [4] and the ODP/CORBA trading service [5]. Jini is able to operate in a
ubiquitous environment, as it has mechanisms for discovering the trading function—i.e.,
the lookup server—dynamically. Once a binding has been established to the lookup ser-
vice, Jini trading operates in a similar way to that of the QuA broker. The ODP-trader is
part of a middleware framework and also operates similarly to the QuA broker. A more
recent trading-like resource discovery service is the Universal Description Discovery
and Integration (UDDI) registries of Web Services [6]. A service provider publishes
the services it is willing to share with others in a UDDI registry, which announces their
availability to interested customers. A service consumer accesses the UDDI registry to
retrieve the relevant announcements, which describes where and how the services can be
invoked. The main difference between Jini, ODP trader, UDDI registry, and QuA is the

Brokering Planning Metadata in a P2P Environment 171

way resources are modeled. In ODP, resources are modeled as service offers, while in
UDDI resources are modeled as WSDL documents. But more importantly, neither Jini,
ODP trader, nor UDDI registries have been designed for a P2P system architecture.

Twine [2] builds on the Intentional Naming System (INS), which focuses on resource
discovery in the mobile domain. Resources in Twine are represented by a resource de-
scription consisting of <attribute,value> pairs. Twine creates trees of these pairs as hi-
erarchical structures of attribute types are possible. On resource advertisement, strands
are constructed from the trees for each possible prefixed subsequence of attributes and
values in each attribute hierarchy, where the top-level attribute in the hierarchy is the
prefix. When resources are queried for, one of the longest strands from it tree is ex-
tracted at random, and the node that has responsibility for the given key is asked for
resources that fit the resource description. Twine relies on Chord [7] to distribute re-
sponsibility for resources among participating nodes. However, Twine is not intended
for use in component-based middleware, and has no need for strong association of types
to resources.

JXTA [8] uses messaging for advertisement of resources fitting a P2P environment,
allowing for creation of module types in advertisements. In our context, it is crucial to
find all advertised metadata describing services of a given type in the network. Even
if the introduction of the Shared Resource Distributed Index (SRDI) makes it more
likely that information that belong together are grouped to one rendezvous peer, JXTA
provides no guarantees for finding all the published pieces of metadata describing a
specific type. Furthermore, nodes willing to take the role as supernodes (rendezvous
peer or gateway peer) might not be available in all situations.

It is therefore interesting to investigate the feasibility of designing and implementing
a broker component for QuA based on P2P technology.

4 Design of the P2P-Based Broker Service

In QuA, both service blueprints and capsules are described by service mirrors, which
are frequently retrieved in the planning and re-planning phases of applications. During
these phases, the QuA planner uses the trading features of the broker to filter out the
most useful service mirrors.

Our design approach consists in creating a P2P network and distributing the service
mirrors evenly on participating nodes. The network is self-organizing, and the nodes
will at all times agree upon which nodes are responsible for the different service mir-
rors. Service mirrors are also replicated to additional nodes, which makes the metadata
highly available and independent of any central entity.

The main design issues of the P2P broker include choice of P2P technology and its
integration into the QuA architecture (cf. Section 4.1), the mapping of service mirrors
to P2P nodes (cf. Section 4.2), and the replication scheme that makes service mirrors
highly available (cf. Section 4.3).

4.1 Choice of P2P Technology

While ideally the design should be independent of any specific P2P technology, it
is important for service planners to be able to discover all possible service mirrors

172 J. Oudenstad et al.

Fig. 1. P2P broker and planner services in QuA

describing services of a specific type. For this reason it is preferable to use a structured
P2P overlay. Unstructured P2P technologies, such as the well known Gnutella proto-
cols, make use of broadcasts of query messages to find resources in the network. To
avoid these broadcasted messages strangling the network, a maximum number of hops
is usually specified for these messages. Because of the way these systems construct
their networks, this feature provides no guarantee for finding all resources that exists in
a network matching a specific query. This is in conflict with the requirement of finding
all service mirrors matching a service type and a set of properties when requested by
the service planner. In structured P2P overlays, each participating node is assigned a
unique identifier (UID) from a global identifier space. Every node is typically respon-
sible for a contiguous area of the identifier space and receives all messages sent to any
UID in this space. This area usually consists of a set of UIDs that are numerically closer
to the node’s own UID than to the UID of any other node. When a node joins or leaves
the network, the neighboring nodes in the UID space are affected by this as their area
of responsibility grows or shrinks.

By mapping service mirrors to UIDs, we effectively assign responsibility for them
to nodes in the network. The node that is responsible for this area of the UID space will
at any time be responsible for that service mirror. In our design, a collection of P2P
brokers constitute a distributed system that works as a whole to provide a service that
is common and equal to all interconnected instances of the software.

Figure 1 depicts four instances of QuA deployed on four nodes of a P2P network.
Each instance is composed of a Core hosting two pluggable services: the P2P broker
and the Service planner. The Service planner uses the local P2P broker to retrieve
service mirrors that are suitable for an adaptation. The local P2P broker interacts with
networked P2P brokers to find all the relevant service mirrors. The P2P broker itself
is composed of three parts. The P2P part contains the implementation broker logic.
Communication with other P2P brokers is maintained by the Overlay part, while the
Glue part glues those parts together and assists in calculating replication of the data.

4.2 Mapping of Service Mirrors to Nodes

To be able to distribute the metadata evenly on the nodes participating in the net-
work, we need a way to map service mirrors to nodes. As there already exists hashing

Brokering Planning Metadata in a P2P Environment 173

mechanisms in the P2P technologies that handle the creation of keys that fit in the UID
space based on some input (e.g., a string of characters) the problem boils down to ex-
tracting data from the service mirrors to use as basis for the generation of keys. It has
been shown by many projects, including the PAST persistent storage project [9], that
structured P2P overlays can be used to effectively distribute storage of large quantities
of data between nodes. Our problem is different because the QuA planner searches for
all service mirrors conforming to a service type and property constraints and not for
a specific mirror. In practice, this means that instead of creating unique keys for each
service mirror (like e.g., PAST creates a key for each individual file), we need to group
service mirrors together in a way that makes it easier to find all the relevant service
mirrors when they are needed.

Both CAN [10], Chord [7], Pastry [11], and Tapestry [12] create keys and UIDs
with a hashing function to ensure an even distribution of UIDs in the identifier space.
These hashing functions always create the same UID from the same input. Thus, an
intuitive way of mapping service mirrors to nodes uses only the service type specified
by the service mirror as basis for key generation. Both nodes advertising and querying
for service mirrors find out which service type the service mirror specifies, and uses the
string representation of the type as a basis for calculation an overlay specific key for
the resource (known as key-base). A consequence of this approach is that all service
mirrors associated to the same service type, will be mapped to the same key and hence
to the same node. Unfortunately, this means that when there are many service mirrors
specifying the same service type, such as when there are many instances of a specific
capsule type, they will all be mapped to and thus hosted on the same node. Furthermore,
each time a service planner asks the broker for capsules that can host a service, all those
queries will end up as incoming messages at the node responsible for that key-base.

Besides, if in its request to the broker, the service planner specifies a property con-
straint, such as a version or a location constraint, then the receiving node has to search
through all the service mirrors to find the capsules that match the constraint. If several
service planners plan concurrently, this may be time consuming. This problem will be-
come cumbersome for any service type referenced by many service mirrors, and often
retrieved by service planners. In order to address this issue, we associate more than one
key to each resource advertised. By using more storage space for each resource, and
distributing it on participating nodes, the search space and thus the time for queries can
be reduced. In addition, as explained below, the requests for service mirrors for spe-
cific service types will be distributed over more keys, and implicitly over more nodes,
ultimately ensuring a better distribution of queries. We achieve this by creating more
than one key-base when the advertised service mirror specifies values for enumerated
properties—i.e., properties that have an enumerated type.

In general, a service mirror can be characterized by the pair [T, < p0, . . . , pn >]
where T is the type specified by the service mirror, < p0, . . . , pn > is an ordered list of
the enumerated properties, and each pi draws its value vi from an enumeration domain
Di. Then, we can define a set of key-bases in the advanced mapping method, where
each key-base is defined as:

key-base = T + x0 + · · · + xi + · · · + xn

174 J. Oudenstad et al.

Fig. 2. Mapping of service mirrors to nodes

where T is the type of the service, xi ∈ {vi, ∅} (where vi ∈ Di, while ∅ is the empty
string representing a wild card), and the operator + indicates string concatenation. To
ensure that key-bases based on enumerated properties are generated in the same way in
all participants of the network, property values are alphabetically ordered based on the
names of the property types for the service type associated to the mirror.

The P2P broker receiving the initial advertisement of a new mirror goes through the
property set of the service mirror and finds all enumerated properties that are speci-
fied. Then, by following the property type ordering, it creates key-bases for all possible
combinations of the service type and values of the enumerated property types where the
values are either the value specified by the service mirror, or a wild card. Key-bases for
each combination of property value or wild card are created in order to later match the
key-base generated from any broker query when requesting a particular service mirror.
This means that a P2P broker that receives a resource query for a service type and some
properties, creates one key-base based on the service type wanted and the enumerated
properties specified in the service mirror. This key-base will be in the form:

key-base = T + v0 + · · · + vi + · · · + vn

where T is the type of the service, vi ∈ Di (Di is the enumerated domain of property
i), and the operator + indicates string concatenation.

We illustrate this idea by the following example (see Figure 2). The network of P2P
brokers can be seen as a distributed hash table, where each node has responsibility for a
unique part of the UID-space. To simplify, we assume that there is only one enumerated
property type for a capsule, specifying the type of code hosting capabilities it has. We
also assume that a capsule, whose type is QuA-capsule, exclusively hosts either Java
or Smalltalk code. In other words, the value range of the property hosting capabilities
is strictly enumerated to Java and Smalltalk.

In our example, there are three possible key-bases that can be created from the
type and the enumerated property, of which any announced mirror at most can pro-
duce two. The three resulting key-bases are QuA-capsule, QuA-capsule:Java1

1 The “:" delimiter is placed between type and property for readability, and is not supposed to
be there following the definition of the form of key-bases given above.

Brokering Planning Metadata in a P2P Environment 175

and QuA-capsule:Smalltalk. Now, as we have more than one key-base for
each service mirror, we associate one key with each key-base (cf. Figure 2). For
example, key 1 is QuA-capsule, key 2 is QuA-capsule:Java, and key 3 is
QuA-capsule:Smalltalk. If node A advertises its own capsule as a resource, and
the capsule has capabilities of hosting Smalltalk code, both node C and node B
would assume responsibility of hosting that resource, but under different conditions.
Node C would now respond to all queries for a capsule without any preferences to
hosting capabilities. Node B would respond to all queries for a capsule that has capa-
bilities of hosting Smalltalk code. Further, node C would host one service mirror
for each capsule advertised. Node B would only host service mirrors for capsules with
Smalltalk capability, and node D would host service mirrors for capsules with Java
capabilities. The reader may notice that it is possible for more than one key belonging
to a service mirror to be associated with one node. However, the probability of this
happening decreases linearly with the number of nodes joining the system. Further, the
broker is able to distinguish resources based on key-bases anyway.

The multi-key mapping technique described above has two main advantages with
regards to filtering of service mirrors in the broker. Service description including enu-
merated properties are processed by the responsible node that match the requested prop-
erties. This ensures that service mirrors exhibiting at least one incompatible property are
excluded from the research. And, because of the multi-key advertising, the different ser-
vice requests (most often) end up at different nodes, increasing parallelism of metadata
filtering during service planning.

4.3 Replication of Service Mirrors

As nodes join and leave a network of P2P brokers, the areas of responsibility for nodes
change dynamically. As a result, when a P2P broker of a given node is asked for ser-
vice mirrors conforming to a service description, the node that is responsible for the
corresponding key might not be the same as the one that processed the advertisement
message initially. In the same way, when nodes responsible for service mirrors leave
the network, that information will be lost if it is not taken care of by some replication
mechanism. If not, the design will not ensure metadata robustness to node failure. Thus,
we support built-in replication in the system to handle both the self-organization and the
metadata robustness concerns.

A key feature of any structured P2P network is that the placement of nodes in the
global identifier space relative to each other is organized. This means that it is always
possible to calculate who is the closest neighbor in a given direction in the UID-space.
These systems also have strict algorithms on routing messages, always routing to the
node responsible for the given area that the destination UID of the message lies within.
The combination of these two properties gives the opportunity to use the immediate
neighbors of a given node, node B, as its replicating nodes. If node B unexpectedly
leaves the network, one of its immediate neighbors, node R1, will become in control
of the area of the UID-space node B was responsible for (cf. Figure 3). In effect, node
R1 will receive all messages regarding the objects that node B just recently had. In
some cases where node B had multiple resources associated with different keys, the
responsibility of resources may be spread amongst several immediate neighbors. In any

176 J. Oudenstad et al.

Fig. 3. Replication in the P2P broker

case, replicating data on the nearest neighbors to node B solve the problem. In addition,
each node must recalculate its immediate neighbors and area of key-responsibilities
frequently so that replicas remain up to date.

In a special case, node B may leave and a node E may join the network with an UID
that lies between node B and node R1 in the key-space. In this case, constant monitoring
of the routing state of node R1 discovers the arrival of node E. By recalculating the
responsibility-area of UIDs, R1 and E are able to figure out which keys node E is
responsible for, and arrange for R1 to send the relevant data to it.

Now consider Figure 3 that basically illustrates how replication would work in a
Pastry network. A resource gets advertised at node A. Node A calculates the UID2 that
corresponds to the service mirror and sends an advertising message to the network.
Node B is the node responsible for that UID, so node B receives the message. The
first thing node B does is to replicate the service mirror by sending a message to the k
replicating nodes R (k is known as the replicating factor).

Replication like this has already been implemented with PAST [9,11] over the Pastry
technology, and it can be shown that it is possible to implement over a Chord, Tapestry,
or CAN network, even though the CAN identifier space differs significantly from the
others (at least for a high number of dimensions).

4.4 Outdated Information in Service Mirrors

Although our design ensures that the metadata is highly available even with nodes join-
ing and leaving the network due to the replication scheme, we can not be sure that the
information in the service mirrors do not get outdated. As nodes that host blueprints
or even instantiated and running components that have been advertised to the P2P bro-
ker leave the network, the service mirrors describing these services will become out of
date. Likewise, service mirrors describing capsule resources will also contain outdated
information when the nodes hosting those capsules disappear from the network.

We assume that, on average, nodes stay for a while once they have joined the net-
work of P2P brokers. As QuA is used for planning and frequent re-planning of adaptive
applications, the time used to plan and re-plan applications has to be kept at a minimum

2 Or possibly multiple UIDs from multiple key-bases if running the advanced mapping method,
but in this example it is only one key.

Brokering Planning Metadata in a P2P Environment 177

in any case. Whenever the service planner discovers that a service mirror contains out-
dated information, it will ask the P2P broker to discard those service mirrors. Further,
we believe that the problem of outdated information on where to find blueprints can be
solved by creating a P2P-based blueprint repository. By combining this with a policy
to only use a local broker to advertise and query for instantiated and running compo-
nents, we believe that we have an efficient and satisfactory solution for highly available
metadata.

5 Evaluation

The evaluation of the P2P broker reported in this section has been performed using the
Java implementations of QuA and FreePastry [13]. We have conducted performance
measurements on a desktop PC with the following software and hardware configura-
tion: Intel Core 2 Duo 2,38 GHz processor, 3GB of RAM, Ubuntu linux distribution,
Java Virtual Machine Sun JDK version 1.6.01 build 105. Our experiments focused on
validating the following properties of the P2P broker: scalability, self-organization, and
robustness to metadata loss by node failure. In particular, we evaluated the algorithm
that maps service mirrors to UIDs in order to validate the even distribution of service
mirrors among the P2P nodes (cf. Section 5.1). We ran the entire test setup on a sin-
gle computer to disable the interferences created by the network. The P2P broker we
designed balances the load of storing service mirrors, resolving queries, and filtering
service mirrors on nodes that have responsibility for hosting the corresponding service
mirrors. Replication factor is set to 4, which means that the four closest nodes to the
responsible node are told to replicate the resources. Thus, we expect that the system as
a whole will be scalable if the responsibility for service mirrors are well distributed.
As a consequence, we also evaluated the resilience of the system to node failures
(cf. Section 5.2) before discussing our results (cf. Section 5.3).

5.1 Service Mirrors Distribution

The first experience aims at demonstrating the scalability of the distribution of service
mirrors among distributed nodes. Thus, Figure 4 shows the results of an experiment
where 81, 000 service mirrors specifying different service types are advertised in a P2P
network of 300 nodes. This configuration reflects the deployment of a set of QuA appli-
cations and their respective configurations. For different node UIDs along the X-axis,
the Y-axis shows in the blue dotted graph the number of service mirrors each node is
responsible for, the replicated ones in the green dashed graph, and either responsible
for or replicated in the red graph. Although the graph shows that the responsibilities for
service mirrors are not perfectly evenly distributed, it shows that the metadata is shared
among all participating nodes. This distribution is justified by the way Pastry distributes
keys responsibility to nodes. For example, when 300 nodes are randomly assigned UIDs
in an UID-space of 2128, the nodes form clusters in the UID-space. The nodes at the
edges of these clusters get responsibility for a high number of keys, while those at the
center of the cluster will have neighbors close by on both sides, and will have a smaller
key-space to be responsible for.

178 J. Oudenstad et al.

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300

re
so

ur
ce

s

node id

Distribution of keys

both
replicated

root

Fig. 4. Distribution of service mirrors over nodes

5.2 Service Mirrors Availability

To demonstrate that the system is able to reorganise the distribution when new nodes
are joining, we performed series of experiments where an initially small network is
joined by a stream of new nodes. In Figure 5, we observe the evolution of 3 resources
(qua:/VideoBuffer, qua:/Component1, and qua:/Printer), which are initially adver-
tised to a network composed of 11 nodes. The X-axis depicts time-stamps, while the
Y-axis shows UIDs in the UID-space in base 10. 100 nodes are individually joining
this initial configuration following a rate of about 1 node per second. Immediately upon
joining the network, each joining node tries to discover all service mirrors. The respon-
sible node for answering service mirror requests is allocated to the closest node with
regards to the resource key requested. Monitoring shows how the responsibility for re-
sponding to the queries shift as new nodes join the network. Thin lines in the graph can
be explained by the delay introduced by FreePastry to re-organize the distribution and
re-allocate responsibilities.

Similarly, as depicted in Figure 6, we have performed experiments where we
have started each scenario with an initial network composed of 100 interconnected
nodes. Subsequently, each node leaves the network unexpectedly at a random time
(60 seconds on average). Initially, 3 service mirrors were advertised to the network
(qua:/VideoBuffer, qua:/Component1, and qua:/Printer). In these experiments, a
number of nodes are constantly querying the three resources to monitor their avail-
ability. As nodes responsible for certain service mirrors left the network, we observed
that the closest node in the UID-space answered queries as expected.

5.3 Discussions

This section discusses the results we obtained with regards to the observed properties:
scalability, self-organization, and robustness to metadata loss by node failure.

Distribution and Scalability. As mentioned in Section 5.1, the service mirror distribu-
tion we obtained is not perfectly even. The reason is that the resources are assigned

Brokering Planning Metadata in a P2P Environment 179

 5e+47

 6e+47

 7e+47

 8e+47

 9e+47

 1e+48

 1.1e+48

 1.2e+48

 1.3e+48

 1.4e+48

Id
 o

f r
es

po
nd

in
g

no
de

 (
B

as
e1

0)

Time of answer

Joining nodes

qua:/VideoBuffer:.
qua:/Component1:.

qua:/Printer:.

Fig. 5. Service mirrors responsibility when nodes join

 0

 2e+47

 4e+47

 6e+47

 8e+47

 1e+48

 1.2e+48

Id
 o

f r
es

po
nd

in
g

no
de

 (
B

as
e1

0)

Time of answer

Departing nodes

qua:/VideoBuffer:.
qua:/Component1:.

qua:/Printer:.

Fig. 6. Service mirrors responsibility when nodes leave

keys that are fairly well distributed in the UID-space, but node identifiers are clustered.
Given that the resources are replicated to the closest nodes in the UID-space, some
nodes get responsibility for a larger range of keys than other nodes. Nevertheless, even
if the distribution is not perfect, the P2P-broker seems to be able to take advantage of
Pastry’s properties with respect to distribution of resources. This make the P2P-broker
able to scale as the numbers of nodes and resources increases.

Self-organization. In Figure 5 and Figure 6, thin lines depict the reorganization of
responsibilities and replicas when the network topology evolves. These thin lines rep-
resent temporary unavailability of resources and forces the QuA planner to wait for the
service mirrors. The temporary unavailability of resources is due to FreePastry, which
tries to send a message via a route that is unavailable because of a recent node failure.
When the node failure is discovered, FreePastry routes the message along a different
path. This delay can be reduced by decreasing the message timeout values for messages

180 J. Oudenstad et al.

in the FreePastry implementation. However, if the timeout is set too low, messages will
be frequently re-sent even if an answer to the message is underway, and consequently
much resources will be wasted on sending duplicate messages.

Robustness. Figure 5 and Figure 6 validate the replication scheme. In particular, it is
capable of replicating resources to new nodes to try to keep the invariant that k + 1
nodes should hold every resource in the system. However, the dynamism of the P2P
environment breaks regularly this invariant and the replication scheme has to detect
these situations to restore the system back into a consistent state. The capacity of the
replication scheme to handle node failures depends on the frequency of node failures.
In particular, [11] has shown that the lazy repair algorithms of Pastry allows the net-
work, over time, to completely recover from a drop of 10% of 100, 000 nodes. When
increasing the frequency at which nodes leave the network, we reach a point where
the replication scheme fails. Observations show that this happen when the number
of nodes equals the replication factor—i.e., the number of nodes replicating each ser-
vice mirror—dropped out in a time interval close to the keep-alive refresh interval of
FreePastry.

6 Conclusions

In this paper, we have introduced the design and the implementation of a P2P broker for
the QuA planning-based adaptation middleware. The QuA middleware uses the broker
to retrieve metadata in the form of service mirrors describing implementation alterna-
tives conforming to a service description. The description includes the type of service
required and constraints on other properties of the service implementation. The broker
is also used to advertise new service mirrors.

While the original broker for QuA was designed for a traditional client-server archi-
tecture, this paper has investigated the feasibility of implementing the QuA implemen-
tation broker using P2P technology. A particular challenge addressed in this paper was
the mapping of service mirrors to nodes in the network to provide an even distribution
of metadata over the nodes. While enabling better scalability of query processing, this
paper has also shown that the QuA broker can tolerate node failures.

Our perspectives include large-scale deployment of the QuA middleware to evaluate
the performance of the P2P broker using a time metric (e.g., response-time, throughput).

Acknowledgements

The authors thank the partners of the MUSIC project and reviewers of the DAIS confer-
ence for valuable comments. This work was partly funded by the European Commission
through the project MUSIC (EU IST 035166).

References

1. Eliassen, F., Gjørven, E., Eide, V.S.W., Michaelsen, J.A.: Evolving Self-Adaptive Services
using Planning-Based Reflective Middleware. In: 5th Int. Middleware Workshop on Adaptive
and Reflective Middleware (ARM). AICPS, vol. 190, p. 6. ACM, New York (2006)

Brokering Planning Metadata in a P2P Environment 181

2. Balazinska, M., Balakrishnan, H., Karger, D.: INS/Twine: A Scalable Peer-to-Peer Architec-
ture for Intentional Resource Discovery. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE
2002. LNCS, vol. 2414, pp. 195–210. Springer, Heidelberg (2002)

3. Bracha, G., Ungar, D.: Mirrors: Design Principles for Meta-level Facilities of Object-
Oriented Programming Languages. In: 19th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), Vancouver, BC,
Canada, pp. 331–344. ACM, New York (2004)

4. Sun Microsystems: Jini Architecture Specifications - v2.1 (2005),
http://www.sun.com/software/jini/specs

5. Bearman, M.: Tutorial on ODP Trading Function. Faculty of Information Sciences Engineer-
ing. University of Canberra, Australia (February 1997)

6. OASIS: UDDI Version 3.0.2 (February 2005), http://uddi.xml.org
7. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable

peer-to-peer lookup service for internet applications. In: Int. Conference on Applications,
technologies, architectures, and protocols for computer communications (SIGCOMM), San
Diego, CA, USA, pp. 149–160. ACM, New York (2001)

8. Sun Microsystems: JXTA Protocol Specification - v2.0. 2.5.3 edn. (October 2007),
https://jxta-spec.dev.java.net

9. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage utility. In:
8th Int. Workshop on Hot Topics in Operating Systems (HotOS), CNF, Schloss Elmau, Ger-
many, pp. 75–80. IEEE, Los Alamitos (2001)

10. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Int. Conference on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM), San Diego, CA, USA, pp. 161–172.
ACM Press, New York (2001)

11. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and Routing
for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

12. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.: Tapestry:
A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in
Communications 22, 41–53 (2003)

13. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.: FreePastry.
Rice University, Houston, USA. and Max Plank Institute for Software Systems, Saarbrücken,
Germany, http://freepastry.org

http://www.sun.com/software/jini/specs
http://uddi.xml.org
https://jxta-spec.dev.java.net
http://freepastry.org

Adaptive Web Service Migration

Holger Schmidt1, Rüdiger Kapitza2, Franz J. Hauck1, and Hans P. Reiser3

1 Institute of Distributed Systems, Ulm University, Germany
{holger.schmidt,franz.hauck}@uni-ulm.de

2 Dept. of Comp. Sciences, Informatik 4, University of Erlangen-Nürnberg, Germany
rrkapitz@cs.fau.de

3 LASIGE, Departamento de Informática, University of Lisboa, Portugal
hans@di.fc.ul.pt

Abstract. In highly dynamic and heterogeneous environments such as
mobile and ubiquitous computing, software must be able to adapt at
runtime and react to the environment. Furthermore it should be inde-
pendent of a certain hardware platform and implementation language.

In this paper, we propose an infrastructure for self-adaptive migrat-
able Web services (SAM-WS) for implementing applications for such en-
vironments. A SAM-WS supports stateful migration and adaptation to
particular application context by being able to dynamically change the
interface, locally available state and implementation in use. Despite adap-
tation and migration it maintains a unique ID during the whole life time.
This allows clients to have a location-independent reference to a specific
Web service instance. Although our prototype implementation is based
on Apache Axis, the concept can be easily ported to any Web service
framework without platform modifications. We provide an example ap-
plication and performance measurements for different system platforms
ranging from a standard device to resource-restricted mobile devices.

Keywords: Web Service, Migration, Adaptation.

1 Introduction

In ubiquitous computing (UbiComp) [1], a large number of small devices are
interconnected in a dynamic and ad-hoc fashion. Applications for such devices
should be platform independent because of the heterogeneous hardware and
system software. They have to be adaptive and reactive to cope with the inherent
environment dynamics. This is especially the case for mobile applications that are
not attached to a specific device. Thus, a UbiComp infrastructure should provide
mechanisms to automatically handle heterogeneity and reduce complexity of
handling adaptivity and reactivity in the applications.

Mobile processes are an approach to simplify development of applications that
change their interaction patterns and location during lifetime. A developer uses
a description language (such as proposed by Kunze et al. [2]) to specify the be-
haviour and the interactions of the application. State-of-the-art infrastructures
have limitations in terms of supporting adaptation and handling heterogeneity.

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 182–195, 2008.
c© IFIP International Federation for Information Processing 2008

Adaptive Web Service Migration 183

Adaptation might be necessary for the local state of a process, the current func-
tionality, and the implementation variant. These concerns need to be adjusted
according to runtime environment properties, such as the hardware architecture,
operating system, available memory, and local devices. Supporting heterogene-
ity means that processes have to be able to migrate between heterogeneous
nodes, without requiring the developer to manually implement code for convert-
ing incompatible data representations. Interoperability between different vendor
implementations of the infrastructure calls for using standardised protocols.

In previous work, we proposed the concept of a self-adaptive mobile process [3].
It can be seen as an ordered execution of services and is able to adapt itself in
terms of state, functionality and implementation to the current context (which
is represented by the runtime environment) and to migrate either for locally ex-
ecuting services or for accessing particular context, while maintaining its unique
identity. We suggest an implementation of mobile processes with Web service
technology on the basis of the model-driven architecture (MDA) [4]: developers
specify behaviour and interactions of an application using a self-adaptive mobile
process description, which is mapped on a self-adaptive migratable Web service
(SAM-WS). In this paper, we focus only on the infrastructure for implementing
such SAM-WSes without details on the MDA code generation process.

The novel contribution of our infrastructure is that it combines Web service
technology with mobility mechanisms that support adaptation and heterogene-
ity. The key difference to related work on migratable Web services [5,6] is the
support for adaptation to the application context by dynamically changing the
service interface, the available state and the implementation while maintaining a
persistent Web service identity. Unlike our previous work on context-aware mi-
gration of CORBA objects [7], in this paper we propose the use of standard Web
service technology as core mechanism, which simplifies interoperability between
heterogeneous infrastructures of different vendors and allows disconnected oper-
ation. On the basis of our dynamic code loading infrastructure [8], the platform
contains a novel dynamic deployment service that allows service migration to
machines on which the needed code is unavailable and thus has to be loaded on
demand. We support client-transparent migration by providing persistent Web
service references for the whole life cycle by introducing a persistent Web service
identity. Although our prototype is implemented using Apache Axis, the concept
provides a generic life cycle service specification for Web services.

The paper is structured as follows. First, we discuss related work. In Section 3,
we present our design of adaptive Web service migration: basic principles, re-
quirements and logical entities. After an in-depth description of our infrastruc-
ture in Section 4, we sketch a basic example application and show performance
measurements in Section 5. We conclude and draft future work in Section 6.

2 Related Work

There are several projects targeting adaptation and context-sensitivity of Web
services. For instance Erradi et al. developed a policy-based middleware for

184 H. Schmidt et al.

adaptive composite Web services [9]. Adaptation is based on dynamic Web
service composition in these systems, wheras we replace the original Web ser-
vice with an adapted one. Thus, our approach allows optimal resource usage
by adapting a Web service to a device-tailored one. The Web service composi-
tion approach for adaptation can be used for integrating legacy services in our
approach.

There exists a lot of work in the area of object migration, in particular for
mobile agents (objects with an autonomous activity). However, many systems,
such as Aglets [10] rely on native Java serialisation and are therefore restricted
to a homogeneous environment and do not support adaptation to the context.

In previous work, we presented a concept for weak object migration on ba-
sis of the CORBA life cycle service [11]. For implementing mobile objects we
use CORBA value types, i.e., objects with call-by-copy semantics. Thus, the de-
veloper does not have to care about externalisation and internalisation of the
mobile object as this is handled transparently by the CORBA system. Our im-
plementation does not support adaptation to the current application context.

There also exist systems that support adaptive object migration. For instance,
Almeida et al. developed a dynamic reconfiguration service for CORBA [12].
The developer has to implement methods for internalising and externalising the
object state, which may lead to error-prone implementations.

Recently, we introduced a concept for context-aware object migration on basis
of the CORBA life cycle service [7]. To the best of our knowledge, this service
is the only one allowing dynamic adaptive object migration regarding state,
interface and code at runtime. However, it is restricted to CORBA and does not
enable Web service migration and disconnected operation.

Hammerschmidt and Linnemann developed a service for stateful Web service
migration [5]. However, as the approach builds on native Java serialisation, it is
limited to homogeneous Java environments. The system does not provide con-
cepts for adaptation of the state, interface and code. Furthermore, Ishikawa et
al. describe a system for supporting Web service integration for pervasive com-
puting [6]. In this approach mobile agents implement workflows. The agents can
move to Web service locations in order to obtain efficient local access. However,
their system does not support adaptation and is restricted to Java as it uses
native Java serialisation.

Our system enables the implementation of mobile workflows (see example in
Section 5). However, in contrast to a mobile workflow management system such
as proposed by Satoh [13], which transfers documents, our system allows the
complete migration of services. This enables tailored adaptation of the applica-
tion to the current context and an on-demand instantiation of the application
on devices that are not aware of the application in advance.

3 Design of Adaptive Web Service Migration

In this section, we first give an overview on basic principles on which our concept
for adaptive Web service migration builds. Then, we present requirements that
we identified and present necessary logical entities.

Adaptive Web Service Migration 185

3.1 Basic Principles of Self-adaptive Web Service Migration

Web Service migration is the concept of moving a Web service from one machine
to another at runtime. This requires transferring the Web service’s implemen-
tation code. In this paper, we introduce stateful self-adaptive migratable Web
services (SAM-WS), which have the advantage of supporting dynamic adapta-
tion on the basis of current run-time environment and explicitly specified cri-
teria. Our infrastructure introduces a concept for uniquely referencing a Web
service independent of its location on basis of a location tracking service (see
Section 4.5). For this purpose, the service URL is augmented with a globally
unique ID (GUID). This allows the coexistence of several Web service instances
at a particular location. We allow adaptation of the Web service’s provided func-
tionality (i.e., interface), the used internal state (i.e., set of variables) and the
implementation code. Neither adaptation nor migration influence the GUID of
the Web service, which allows continuous identification and addressing of the
Web service. The GUID is automatically generated at deployment time.

For implementing self-adaptation, we introduce the concept of Web service
facets. These represent a particular characteristic of the migratable Web service
with a specific configuration of interface, state and implementation. Figure 1
shows a Web service facet providing interface A, using internal state a, b, and
c and running an implementation in Java which adapts itself in context of mi-
gration to a Web service facet providing interface B, using internal state b, c, d
and running an implementation in C++. As mentioned before, it is important to
note that the globally unique ID is preserved during migration. The assignment
of service state from one Web service facet to another one is realised using a
name matching algorithm: If a Web service facet #1 contains state attributes
with name b and c, the states b and c within another Web service facet #2 are
considered the same (see Figure 1). Thus, after adaptation from Web service
facet #1 into Web service facet #2, the state b and c of facet #2 has to be set
to the prior state b and c of facet #1 (type incompatibilities result in an error).

Stateful adaptive Web service migration requires transferring the service state
from the source to the target. By enabling a replacement of the implementation
upon migration of the Web service, transfer states have to be interpretable by any
possible implementation. Thus, we differentiate implementation-dependent and
implementation-independent state of a Web service. We define implementation-
independent state as the part of the service state that should be interpretable
by any possible implementation of a specific functionality. For example, in

Fig. 1. Adaptive migration from one Web service facet into another one

186 H. Schmidt et al.

case of a hash table functionality this would be only the key-value pairs. We
consider state such as internal variables of managing structures for the hash
function as implementation-dependent state which varies from one implemen-
tation to another. In case of migration, such implementation-dependent state
can only be interpreted by the same target implementation. Thus, we transfer
implementation-independent state only. However, implementation-independent
state cannot be automatically determined. Thus, the developer of a SAM-WS
has to tag implementation-independent state manually (see Section 4.1).

Additionally, for enabling SAM-WSes, we introduce a differentiation of active
and passive service state. By adapting a Web service to a specific Web service
facet, parts of the service state can be left out and other parts can be added.
We call leaving out parts of the service state passivation and allow a subsequent
activation of this state within another Web service facet. Therefore, passive state
has to be stored for later use (see Section 3.3).

3.2 Requirements for Web Service Migration

We identified several requirements for our infrastructure:
Ubiquitous computing environments are characterised by high dynamics and

heterogeneous infrastructure. Dynamics require supporting run-time decisions,
e.g., selecting appropriate migration targets. Additionally, dynamic loading of
locally unavailable code should be supported for allowing migration to any pos-
sible target location (even if the code is not known there before). The hetero-
geneous infrastructure requires platform- and language-independent techniques
for communication and for state transfer. We think that by building on XML,
Web service technology is appropriate for such environments.

Due to the heterogeneous infrastructure, we advocate requiring self-adaptation
according to the application context. For example, this enables dynamic replace-
ment of the implementation and thus running the same functionality on a mobile
device with a lean and restricted implementation as well as on a workstation with
a fully-fledged implementation.

For intuitive usage of SAM-WSes these should offer client-side transparency.
Clients should notice neither migration nor adaptation of the Web service. This
requires continuous addressing of the migratable Web service for the whole life
cycle without client notice. Every SAM-WS should have a service-specific man-
agement interface, which every possible Web service facet has to support for
providing some kind of stable interface part.

Furthermore, there should be application development support. For instance,
developers should be offered an interface that provides high-level migration and
adaptation support based on criteria, which allow the specification of target
locations, context requirements and adaptation requirements.

3.3 Logical Entities and Collaboration

This section provides a brief overview of logical entities for SAM-WS migration.
Figure 2 shows the interaction.

Adaptive Web Service Migration 187

Fig. 2. Collaboration of logical entities for adaptive Web service migration

When a SAM-WS decides to migrate (this could be triggered internally or ex-
ternally), it has to store the Web service’s active state into a state store service for
later use (passivation, see Section 3.1). To guarantee a consistent state transfer,
migration has to be coordinated with request execution (see Section 4.3). Then,
the SAM-WS tries to discover possible migration targets with the help of a fac-
tory finder service. Therefore, the SAM-WS passes criteria to the factory finder
service (e.g., required context and provided interface at the target) according to
which appropriate factory services (i.e., migration targets) are returned. These
factory services enable the remote deployment of arbitrary Web services (if code
is existent and executable for the particular platform). The factory service allows
the creation of the criteria-specified Web service facet at the desired location.
Last, the newly created Web service is updated with the necessary state from
the state store service, the original Web service is undeployed and references to
the Web service are updated to the new location (see Section 4.5).

4 Infrastructure for Adaptive Web Service Migration

In this section, we sketch our infrastructure for supporting SAM-WSes. First, we
give details on the adaptive Web service migration process with its compulsory
entities within our prototype for Apache Axis1. However, our concept is generic
and can be applied to other Web service containers as well. Then, we show devel-
opment steps for implementing SAM-WSes. Furthermore, we present advanced
concepts for coordination of migration with request execution, dynamic loading
of code and continuously addressing a SAM-WS for its whole life time.

4.1 Process of Adaptive Web Service Migration

Figure 3 shows the collaboration of implementation entities for adaptive Web
service migration. However, before migration is processed it has to be coordi-
nated with request execution (see Section 4.3). In the first step, the SAM-WS’s
move method is called2. The method can either be called directly by a client
or by the SAM-WS itself, which provides a mechanism to enable autonomous
behaviour. For specifying the migration target, the URI to the preferred factory
finder service as well as (key, value)-pairs of non-functional criteria describing

1 http://ws.apache.org/axis/
2 The SAM-WS implements the interface AWSMService within our prototype.

188 H. Schmidt et al.

Fig. 3. Collaboration of implementation entities for adaptive Web service migration

appropriate migration targets (e.g., required context and interface) have to be
passed as parameters.

AWSMManager. For simplifying development, we provide a local AWSMManager
Web service, which manages further migration steps. It provides a move method
that is called by the migrating SAM-WS. As parameters, the SAM-WS passes the
given factory finder URI and criteria describing appropriate migration targets.
Additionally, a self-reference, which is used for state introspection, and the service
ID have to be passed.

Before migrating the SAM-WS, the implementation-independent state has to
be extracted. Therefore, this state has to be described within the WSDL de-
scription to allow a language-independent specification (see Fig. 4). Within our
prototype implementation running in Java we allow annotating implementation-
independent state and provide a tool, which automatically generates the
WSDL description. On the basis of the WSDL description, the implementation-
independent state can be extracted automatically. Then, the state has to be
stored (i.e., passivated) to the state store service for future use (see below).

1 <wsdl:definitions xmlns:wsdl="...">
2 <wsdl:types>...</wsdl:types>
3 <wsdl:portType name="Test">
4 <wsdl:operation name="getX"> ...
5 </wsdl:operation>
6 <wsdl:service name="TestService">
7 <wsdl:port>...</wsdl:port>
8 <awsm:states xmlns:awsm="...">
9 <state>x</state> ...

10 </awsm:states>
11 </wsdl:service>
12 </wsdl:definitions>

Fig. 4. WSDL description with implementation-independent state

Adaptive Web Service Migration 189

1 public interface AWSMStateStore {
2 public String getStates(int id , String stateNames[]);
3 public String getStates(int id) ;
4 public void store(int id, String xmlState);
5 }

Fig. 5. Java interface of the AWSMStateStore Web service

The infrastructure has to select an appropriate migration target. A factory
finder service assists in this selection by, given a list of criteria, returning appro-
priate factory services as a list (see below). The AWSMManager invokes a call-back
method at the migrating SAM-WS to support an application-specific selection.

Last, our AWSMManager creates and deploys the necessary SAM-WS facet at
the new location according to the given requirements, undeploys the original
SAM-WS and updates the SAM-WS reference (see Section 4.5).

AWSMStateStore. The AWSMStateStore Web service provides methods for
storing and retrieving state with respect to a specific service ID. As already men-
tioned in Section 3.1 this is needed for implementing passive state of the SAM-
WS, which is non-existent within a particular facet, but may be used again within
another facet. Figure 5 shows the interface of the AWSMStateStore. For retriev-
ing only necessary parts of the current Web service facet, the AWSMStateStore
service provides a custom getStates method with a parameter for specifying
such parts of the state. For interoperability reasons with other Web service plat-
forms, we use an XML string representation for passing state. This XML state
representation is automatically generated within our AWSMManager on the basis
of the WSDL description containing the implementation-independent state and
parsed within the AWSMStateStore.

We provide a basic AWSMStateStore Web service implementation that inter-
nally stores the XML state data in the memory. However, on the basis of the
AWSMStateStore interface, there can also be more complex implementations,
e.g., using a database or peer-to-peer mechanisms for decentrally storing data.

AWSMFactoryFinder. The AWSMFactoryFinder implements a kind of fac-
tory service repository and represents an abstract service location. Factory ser-
vices can be discovered as soon as they make an initial registration at the
AWSMFactoryFinder. The factory finder service has a register method, which
receives the WSDL-URI of a factory service and a corresponding set of criteria
that the factory service provides (see Fig. 6). For interoperability reasons with
other platforms, these criteria are transferred as an XML string representation.
This data is stored in some kind of factory service repository with provided cri-
teria. For deleting factory services there is an unregister method accepting the
affected factory service’s WSDL-URI as a parameter.

The AWSMFactoryFinder service provides an interface with methods for
searching for factory services according to given criteria. We allow the specifica-
tion of required context (e.g., physical/network location, CPU power, memory)

190 H. Schmidt et al.

1 public interface AWSMFactoryFinder {
2 public void register(String xmlCriteria, String wsdlAddress);
3 public void unregister(String wsdlAddress);
4 public String[] findFactories (String xmlCriteria);
5 }

Fig. 6. Java interface of the AWSMFactoryFinder Web service

and provided functionality. These capabilities of the AWSMFactoryFinder enable
two types of Web service migration: Context-based migration targets at running
the SAM-WS on a platform that provides the desired context and functionality-
based migration targets at running a specific Web service facet, e.g., for im-
plementing the next step within mobile workflows (i.e., the mobile workflow is
implicitly implemented by a SAM-WS, workflow steps are implemented by adap-
tation to specific Web service facets; see Section 5). Internally, for searching for
appropriate factory services, the AWSMFactoryFinder selects adequate factory
services from its repository and returns the corresponding WSDL-URIs.

We also allow using UDDI for discovery of factory services. In contrast to
UDDI, our factory finder service eases the integration of policies according to
which factories are returned (e.g., unordered list and best-fitting first).

AWSMGenericFactory and AWSMFactory. The logical factory service en-
tity from Section 3.3 is split into two entities in our prototype implementation.
The AWSMGenericFactory Web service is responsible for creating a SAM-WS-
facet-specific AWSMFactory Web service. We need this delegation mechanism for
integration of our dynamic code loading infrastructure [8], because it allows load-
ing the AWSMFactory code before creation (see Section 4.4). Direct registration
of an AWSMFactory at the AWSMFactoryFinder is possible as well.

The AWSMFactory enables dynamic deployment of necessary SAM-WS facets.
Therefore, it offers a create method, which takes the SAM-WS ID as well as
mandatory criteria as parameters. On the basis of the passed criteria, an appro-
priate SAM-WS facet is selected and instantiated. By using the given ID, the
necessary state is retrieved from the AWSMStateStore and initialised within the
new SAM-WS facet with keeping the original ID. Then, the Web service facet is
deployed to allow remote access. Therefore, a deployment descriptor as well as
the WSDL interface is generated automatically at runtime if required.

4.2 Development of Self-adaptive Mobile Web Services

For developing a SAM-WS, the developer has to decide which kind of facets a
service should offer. Then, she has to implement them for each platform that
should be supported, according to these conventions:

– Only implementation-independent state should be considered for migration
and adaptation. It has to be marked either by our Java annotation @Imple-
mentationIndependentState or within the WSDL file (see Section 4.1)

Adaptive Web Service Migration 191

– Implementation-independent state defined within one SAM-WS facet is
mapped to another facet by name matching (see Section 3.1)

– The implementation has to implement the AWSMService interface, which
provides life-cycle methods of the SAM-WS (move, copy, remove)

– The implementation has to implement the StatefulService interface,
which provides introspection methods of the SAM-WS (getState,
setState).

For easing development efforts, we provide an abstract AWSMServiceImpl
class, which contains generic code for introspection (on the basis of annotations
and WSDL), generation of the globally unique ID and migration methods. Thus,
the developer only has to inherit from this class and to ensure specification of
state and state consistency among the different SAM-WS facets.

Then, the developer has to generate standard Web service packages of the
SAM-WS facets for the required platforms (e.g., standard Web archive for
Apache Axis). These packages are deployed and registered at our dynamic code
loading infrastructure for loading these packages on demand (see Section 4.4).

4.3 Coordination

For maintaining consistent state with migration and adaptation, coordination
is required. First, migration should only be possible if no other requests are
currently handled by the SAM-WS. We use an interceptor at the server side
for counting the number of currently active requests. Safe migration is possible
if the current migration or adaptation request is the only active. Thus, such a
request can only execute as soon as the request counter is equal to 1. As soon
as a migration or adaptation is requested, all subsequent requests are deferred.
After all previous requests have returned, the migration is started, and after
successful migration, the deferred requests are forwarded to the new location.

In our prototype implementation for Apache Axis, we implemented a
SOAPHandler by extending Apache Axis’ abstract class BasicHandler. There, an
invoke method is called with passing a MessageContext object from the Apache
Axis container for every SOAP request and response. The MessageContext ob-
ject contains the affected service and service method. This allows the sole inter-
ception of a specific SAM-WS; otherwise, other Web services would be affected
as well. The SOAPHandler has to be registered at the container.

4.4 Dynamic Loading of Code

For enabling migration to Web service containers where the necessary code is
locally unavailable, we integrated a dynamic code loading service. Dynamic code
loading is an essential part of service migration, especially in a dynamic envi-
ronment without guarantee of local existence of required code.

We developed a decentralised code loading service (P2P-DLS) [8]. It allows
any peer to offer and to obtain platform-specific code. We proposed a dynamic
loading infrastructure that is independent from the peer-to-peer mechanism in
use. Based on our generic concept, we developed a JXTA-based service [14].

192 H. Schmidt et al.

For supporting dynamic code loading within our infrastructure, we integrated
the P2P-DLS into the AWSMGenericFactory (see Section 4.1). The generic factory
service queries the P2P-DLS for appropriate location-dependent Web service facet
implementations. The AWSMGenericFactory service identifies the necessary code
by the interface name, and loads this code on demand for instantiating factories,
which are specific for deploying a particular Web service facet.

For addressing security issues regarding dynamic code loading standard secu-
rity mechanisms like code signing could be easily integrated.

4.5 Addressing Self-adaptive Mobile Web Services

Even though a SAM-WS is mobile as well as self-adaptive it can be continuously
addressed using the SAM-WS service URL, which also contains the service ID.
We implemented a location tracking service that is able to manage current lo-
cations of a defined set of SAM-WSes. Therefore, Web services initially register
a public service address at the location tracking service and identify themselves
using their current service address with the globally unique ID. The public ser-
vice address, which is located at the location tracking service container, is used
as permanent Web service reference; invocations are redirected by the Web ser-
vice container using the location tracking service data. Whenever a Web service
changes its location, it notifies the location tracking service about the new loca-
tion (i.e., reference is updated). For client-transparency SAM-WSes should im-
plement a management interface being stable within each facet (see Section 3.2).

For improving performance in our prototype for Apache Axis, we implemented
an HTTPRedirector for client-side interception of SOAP requests over HTTP.
This redirector has to be deployed at client-side, which results in every invoca-
tion going through the interceptor. Current locations of SAM-WSes, which are
given in a redirect response, are cached. Thus, further invocations are directly
forwarded without redirection (an error, i.e., a 404 Not Found response, leads
to invoking the original service URL again).

5 Example Application

Our approach provides a basis for the development of flexible and dynamic ap-
plications, e.g., for UbiComp. We present a mobile reporter application, in which
reporters spontaneously initiate a mobile workflow: reporters enter data into a
local Web service, which migrates onto a reviewer’s machine for checking the
data, and then migrates on a publisher’s machine for publishing the content.
Reporters become reviewers after a number of accepted reports. This requires
dynamic deployment, which is also enforced by the fact that participants may
spontaneously join and therefore have to deploy the application on demand.

Such an application can be implemented using SAM-WSes. Web service facets
represent different roles within the mobile workflow: reporter, reviewer and pub-
lisher facet (see Fig. 7). In contrast to standard workflow systems, the workflow
in our system comes along with the code, which can preserve computing resources

Adaptive Web Service Migration 193

Interface:

 Reporter

State:

 Subject

 Content

 Reviewer

 Date

Implemementation:

 Reporter.java

SAM−WS (Facet #1)

Interface:

 Reviewer

State:

 Subject

 Content

 Date

Implemementation:

 Reviewer.java

SAM−WS (Facet #2)

Node 1 Node 2

Migration

Fig. 7. Self-adaptive migration from reporter facet into reviewer facet

for workflow interpretation on resource-limited devices. Our transparent concept
for addressing the SAM-WS enables service observation whenever required.

We measured the time for migrating from the reporter into the reviewer facet.
The measurements were performed on an AMD Athlon with 1.73 GHz and 1GB
RAM with two Apache Axis 1.4 containers (migration source/target) running
on Apache Tomcat 5.5.12 with Java 1.5.0 08. Table 1 shows the overall result
and the time for each of the process steps. We measured the performance of 30
Web service migrations and calculated the average time needed.

Overall, self-adaptive migration takes some time; especially WSDL generation
as well as deployment are noticeable at the migration target. However, WSDL
generation performance can be improved using caching mechanisms. Deployment
at the migration target within the Apache Axis container takes around 72%
of overall migration time. We are confident that future generations of Apache
Axis provide improved deployment performance, which may rigorously improve
overall migration time.

For comparison, we measured the time for migration without adaptation of
the reporter facet. As migration steps are the same, overall time is comparable:
10229 (±582) ms. The moderately increased migration time compared to Table 1
results from the fact that the complete state is transferred, whereas in case of
migration into the reviewer Web service facet the reporter state is omitted.

Considering embedded and mobile devices, we have done the same perfor-
mance measurement for two somewhat outdated ARM-based as well as for a

Table 1. Migration from reporter into reviewer facet on standard device

Migration source (reporter facet)

State extraction State storage Find factories Sum

3±13 ms 101±103 ms 35±29 ms 139 ms

Migration target (reviewer facet)

WSDL generation State loading Deployment State setting Sum

2378±58 ms 90±34 ms 7399±32 ms 19±17 ms 9886 ms

Overall: 10184 ms
±580 ms

194 H. Schmidt et al.

Table 2. Migration from reporter into reviewer facet on embedded/mobile devices

Device CPU Memory Migration Time

Embedded System Strong ARM 233 MHz 256 MB 80±4 s
Handheld (HP Jornada) Strong ARM 200 MHz 32 MB 230±12 s

Subnotebook (Asus EeePC 4G) Intel Celeron M 900 Mhz 512 MB 9±0.5 s

current x86-based device (see Table 2). On outdated devices our Apache Axis
approach does not perform well, but the measurement on the current device with
much more computing power result in better figures. As our concept relies on
standard Web service technology, this can be improved even further by optimised
Web service containers for small devices.

6 Conclusion and Future Work

In this paper, we proposed a novel infrastructure for self-adaptive migratable
Web services. These Web services enable the implementation of UbiComp appli-
cations by supporting very flexible adaptation to particular application context
(dynamic change of the interface, locally available state and implementation in
use). This allows an adaptation of a fully-fledged implementation on a powerful
device to a restricted implementation on a resource-limited device. We imple-
mented a prototype for the Apache Axis Web service container. As our system
builds on top of standard Web service technology without any modifications,
we allow interoperable implementations for other Web service containers as
well. However, for supporting coordination and continuous addressing of the
SAM-WS clients as well as containers have to support interception of invoca-
tions. We prove the feasibility of our approach with a basic reporter example
application and performance measurements for different platforms.

For future work, we plan to implement a prototype for another Web service
platform. We do not expect interoperability problems, as we designed our in-
frastructure to only rely on standard Web service technology. For an improved
appliance in ubiquitous computing scenarios we will investigate the implemen-
tation of our concept using the Java Micro Edition.

Our approach for self-adaptive migratable Web services provides a very flexi-
ble concept. This may lead to error-prone applications whenever migrating into
unanticipated facets (this may, e.g., result in unavailable state). Therefore, we
will examine concepts for defining rules for the specification of allowed migration
of Web service facets into other ones. For supporting this specification process
we are investigating an MDA-like approach as proposed in our recent work [3].

References

1. Weiser, M.: The computer for the 21st Century. Sci. American 265(3), 66–75 (1991)
2. Kunze, C.P., Zaplata, S., Lamersdorf, W.: Mobile Process Description and Execu-

tion. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, Springer,
Heidelberg (2006)

Adaptive Web Service Migration 195

3. Schmidt, H., Hauck, F.J.: SAMProc: Middleware for Self-adaptive Mobile Processes
in Heterogeneous Ubiquitous Environments. In: MDS 2007, ACM Press, New York
(accepted for publication, 2007)

4. OMG. MDA Guide Version 1.0.1. OMG Doc. omg/2003-06-01 (2003)
5. Hammerschmidt, B.C., Linnemann, V.: Migratable Web Services: Increasing Per-

formance and Privacy in Service Oriented Architectures. IADIS Int. J. on Comp.
Sci. and Info. Sys. 1(1), 42–56 (2006)

6. Ishikawa, F., Yoshioka, N., Tahara, Y., Honiden, S.: Mobile Agent System for Web
Services Integration in Pervasive Networks. In: IWUC 2004, pp. 38–47 (2004)

7. Kapitza, R., Schmidt, H., Söldner, G., Hauck, F.J.: A Framework for Adaptive
Mobile Objects in Heterogeneous Environments. In: Meersman, R., Tari, Z. (eds.)
OTM 2006. LNCS, vol. 4276, Springer, Heidelberg (2006)

8. Kapitza, R., Schmidt, H., Bartlang, U., Hauck, F.J.: A Generic Infrastructure
for Decentralised Dynamic Loading of Platform-Specific Code. In: Indulska, J.,
Raymond, K. (eds.) DAIS 2007. LNCS, vol. 4531, Springer, Heidelberg (2007)

9. Erradi, A., Tosic, V., Maheshwari, P.: MASC -.NET-Based Middleware for Adap-
tive Composite Web Services. In: ICWS 2007, pp. 727–734 (2007)

10. Lange, D.B., Oshima, M.: Programming and Deploying Java Mobile Agents with
Aglets. Addison-Wesley, Reading (1998)

11. Kapitza, R., Schmidt, H., Hauck, F.J.: Platform-Independent Object Migration in
CORBA. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, Springer,
Heidelberg (2005)

12. Almeida, J., Wegdam, M., van Sinderen, M., Nieuwenhuis, L.: Transparent Dy-
namic Reconfiguration for CORBA. In: DOA 2001, IEEE, Los Alamitos (2001)

13. Satoh, I.: Network Processing of Documents, for Documents, by Documents. In:
Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 421–430. Springer, Hei-
delberg (2005)

14. Gong, L.: JXTA: A Network Programming Environment. IEEE Internet
Comp. 5(3), 88–95 (2001)

A Model-Driven Approach for Developing

Adaptive Software Systems

Thomas Hamann, Gerald Hübsch, and Thomas Springer

Technische Universität Dresden, Department of Computer Science,
Institute for Systems Architecture, Computer Networks Group

{Thomas.Hamann,Gerald.Huebsch,Thomas.Springer}@tu-dresden.de

Abstract. Context-awareness and adaptation are highly interrelated
key concepts to build applications for heterogeneous and dynamic ex-
ecution environments. While gathering, distribution, abstraction, and
management of context is examined in research for several years, develop-
ment of context-aware, adaptive applications, and the relations between
context and adaptation are rarely considered. We present a model-driven
approach for developing adaptive software. It comprises a design method-
ology, a set of software engineering artefacts, and a runtime platform for
adaptive, multimodal software. Our approach focusses on modelling con-
text information, context providers, and their relations to system func-
tionality and user interface adaptation. We developed an adaptive plant
maintenance application to show the feasibility of our methodology.

1 Introduction

Today, mobile and wireless technologies are an integral part of distributed com-
puting environments building up a convergent platform for traditional as well as
innovative services and applications. As a consequence new service and applica-
tion areas are enabled, but also new challenges for application development arise
from a mobility induced frequently changing infrastructure and the heterogene-
ity of: device capabilities; reliability and performance of network connections;
user requirements and computing context.

Adaptation and context-awareness are closely interrelated key concepts for
software executed in pervasive computing environments. The term adaptation
describes the adjustment of a system to specific conditions or changes in its
environment. The question to ask is: What is adapted to what? referring to
object and target of the adaptation. Objects from an application’s viewpoint
are its processed data, communication for data exchange, and internal structure
(functional components, their interconnections, and placement). The target of
adaptation is the environment (i.e. available resources, user information and
preferences, and context of system usage), characterized by context information
(or short: context), which represents information about the state and changes of
the environment.

A typical example illustrating the need for adaptation is an adaptive plant
maintenance application. Maintenance workers have to visit the plant locations

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 196–209, 2008.
c© IFIP International Federation for Information Processing 2008

A Model-Driven Approach for Developing Adaptive Software Systems 197

to carry out their tasks. In this scenario, workers as well as management could
benefit from adapting mobile and wireless technologies. Mobile workers could
access location and task information or construction documents for particular
plant equipment while being connected to a wireless network. Accessed data
as well as its presentation could be adapted to the capabilities of the devices
a worker is using and to the environmental conditions (e.g. selecting relevant
document parts only for reducing the amount of transferred data or choosing the
interaction modalities according to available modalities and ambient noise and
light conditions). Moreover, application functionality could be reduced according
to the processing power and storage capacity of the used device. The other way
around, the management could track mobile worker’s positions, capture their
current activity and situation, to dispatch incoming service requests to a worker
(a) with an empty task queue, (b) nearby the requesting customer or (c) with
appropriate expertise.

This paper is organized as follows: Related work is discussed in section 2.
Section 3 introduces our adaptive software design methodology. While section 4
discusses its major artefacts representing tasks, application data, and context.
These models are refined over various abstraction levels and are transformed
into code. The runtime environment for execution of the latter is described in
section 5. After a prototype-based validation of our approach in section 6 we
conclude the paper with a summary of our ideas and an outlook to future work.

2 Related Work

The presented approach has relations to several research domains. Beside the
concept of model-driven development, especially the definition of domain-specific
languages and approaches for developing adaptive applications in conjunction
with concepts for context-awareness are relevant.

The modelling of context considered in adaptation processes and the adoption
of a context middleware service are addressed in many research projects during
the last years. Recent projects [11,5] covered the creation of comprehensive and
generic context models with the goal of identifying and integrating characteristics
of context. Especially, ontology-based modelling is addressed [3,7,4] with focus
on knowledge sharing and reasoning. In [3,7], approaches for defining a common
context vocabulary based on a hierarchy of ontologies are described. An upper
ontology defines general terms while domain-specific ontologies define the details
for certain application domains. Both approaches use a centralized architecture
and work on local scenarios from the smart home or intelligent spaces domain.
Furthermore, implications of modelling for context service design, integration of
heterogeneous context sources and distribution support are not addressed. In
our approach we adopt ontologies for modelling context information, but the
major focus of our models is to create a common basis for context providers
and context consumers. Especially, a dynamic discovery and binding of context
providers should be supported. Moreover, the models are used for generating
code for context access.

198 T. Hamann, G. Hübsch, and T. Springer

Besides modelling and integration issues, architectural aspects are considered.
Current context-aware systems are mostly centralized. Thus mobile clients either
rely on a server providing them with context or gather required context on their
own. The Java Context Aware Framework (JCAF) [1] is a Java-based approach
for a generic context middleware service. Service components communicate in
a peer-to-peer manner with support of an event-based notification mechanism.
Nexus [6] deals with the efficient management of heterogeneous context informa-
tion in large-scale infrastructures. Especially scalability is addressed by a feder-
ated context middleware and special-purpose servers for optimized management
of large amounts of context. Moreover, approaches like [9] and [10] concentrate
on the abstraction process of context and the integration of sensing devices.
Our context service as part of a runtime environment follows a peer-to-peer ap-
proach. It adopts concepts from architecture and abstraction but is based on the
abstraction of context providers which can be hierarchically organized to derive
more abstract context.

Our modelling approach is based on the concepts of Model-Driven Archi-
tecture (MDA) and UML. As abstract view to our applications we use a task
model. Its basic classes are adopted from an approach described in [15]. User
interaction modelling builds on concepts developed for device-independent [8,17]
or multimodal user interfaces [2,12].

3 Design Methodology for Adaptive, Multimodal
Applications

Development of adaptive software involves interrelated steps, which require spe-
cific expertise provided by different developers. According to the model-driven
software development approach, these steps are carried on models of different
abstraction layers. Hence, the development process are performed by developers
acting in different roles that must be coordinated. Our approach is embedded
into a design methodology (cf. 1), which defines a set of artefacts (mainly mod-
els), developer roles and a process model, to coordinate the development process.

Fig. 1. Design methodology for adaptive, multimodal systems

A Model-Driven Approach for Developing Adaptive Software Systems 199

The development process starts with a requirements analysis. Focusing on
requirements concerning system functionality and user interaction as well as
their adaptation this phase lays the foundation for later system specification.

In the abstract system design phase two models are created. The task model
specifies control and data flow as well as temporal relationships between tasks.
Whereas, the concept model comprises the application data and knowledge, in-
cluding context relevant for adaptation of the system. The task model refers
to the concept model for the definition of application data, input and output
parameters as well as for involving context for adaptation.

Both models are transformed into the models of the next development phase –
the detailed system design. Depending on their nature tasks are either transformed
into the Abstract UI model (AUI) or the Functional Core Adapter model (FCA).
Context-related concepts from the concept model are transformed into the context
model for specification of context provision based on context providers.

The detailed system design models are used for code generation in the im-
plementation phase. All code is generated toward a well defined runtime envi-
ronment, which is part of the presented solution. It contains a task execution
engine, a user interface engine, and a context infrastructure. The executable task
model is derived from the task model. It governs the control and data flow of the
application and it refers to D3ML representations of the interaction tasks and
FCA code, for executing tasks respectively. It also calls to the context provider
code that is generated from the context model to access context for adapting user
interactions and control flow. The corresponding context providers are managed
by the context service at runtime.

We assume that the roles of a system developer, a user interface expert, and
an context expert are necessary to perform all steps of our development method-
ology. While the task and concept models can be designed by a system devel-
oper, special expertise is needed to consider the requirements for adaptation
and the relations to context in that design phase. Since refinement of the AUI
model and D3ML code comprises multimodal interaction as well as user inter-
face adaptation, this is the responsibility of a user interface expert. The creation
and refinement of the context model and the context provider code is the task of
the context expert, for the latter requires detailed knowledge of the underlying
context service.

4 Models

Models are the formal basis to capture software design at a conceptual level.
Just like UML is tailored to the specific requirements of object-oriented software
design, dedicated models are needed to account for the peculiarities of adaptive
software. We have devised a set of five models to enable modelling of all aspects
that are necessary to create task-driven, adaptive multimodal applications. They
can be used to model the interrelated aspects of domain modelling (concept
model), context provision (context model) and context consumption in the form

200 T. Hamann, G. Hübsch, and T. Springer

of application logic (task model, functional core adapter model) and adaptive
multimodal user interfaces (abstract user interface model) – sections 4.1 to 4.5.

Following the philosophy of model-driven software-engineering, the models
support the range from a highly abstract level down to generated code as the
most concrete level. Transitions between the different levels are implemented as
model-to-model and model-to-code transformations – based on MOF QVT [14]
or JET [16]. Technology independence is achieved across all models and levels
of abstraction.

4.1 Concept Model

The common base of all models is represented by the concept model. It allows
for modelling of application data and knowledge based on ontologies. Therefore
the Ontology Definition Metamodel (ODM) [13] was chosen for integrating the
Web Ontology Language (OWL) into object-oriented design. Thus application
developers can rely on the expressiveness of XML Schema, RDFS, RDF, and
OWL-DL when modelling data that is being processed in and presented by
software.

Furthermore the model may contain contextual concepts and their data types,
which might be relevant for adaptivity. This allows for two major advantages:
(1) uniform modelling of application data and context knowledge, and (2) paving
the way for logic-based reasoning over context.

4.2 Task Model

In our approach, we use a task model to express the dynamic aspects of adap-
tive applications from both the user and the system perspective. Following the
approach presented in [15], our task model features three task types. User Tasks
are performed solely by the user (e.g. perceiving and evaluating system output).
Interaction Tasks represent interactions between the user and the application
via a user interface. Their complexity can vary from entering a simple piece of
information, e.g. a single numeric value, to complex tasks such as editing a plant
maintenance report. System Tasks are performed entirely by application logic
(e.g. validating the maintenance report and storing it in a database).

The temporal relationship between tasks is modelled by directed edges that
represent the control flow. They are triggered when a system task completes or
when the user completes an interaction task. Control flow parallelism is modelled
by Fork, Merge and Join Nodes. Data transport to and from tasks is modelled
by object flows. Like control flows, object flows are directed edges between tasks.
They transport concepts defined in the concept model (see section 4.1) and are
connected to tasks by input and output pins (cf. 2).

Context-awareness is supported by three novel concepts that we have intro-
duced in task modelling. These concepts are event consumers, context queries
and guard conditions.

Event consumers represent event subscriptions in the task model. By event
consumers, subscriptions to the following two types of events can be modelled.

A Model-Driven Approach for Developing Adaptive Software Systems 201

Context events are issued by context providers. They allow push access to con-
text. For example, a context provider may trigger an event when a sensed tem-
perature exceeds a critical value. Observer events allow monitoring state changes
of concepts. Whenever a change occurs, an observer event is triggered. It con-
veys the new state to subscribed tasks. Due to the abstraction introduced by the
concept model, the origin of the state change is not visible to the tasks, allow-
ing homogeneous processing of observer events. For example, an observer event
may be thrown when a system task updates a concept by writing the result of a
calculation or when the value sensed by a context sensor changes.

Tasks can consume events in two ways. Event consumers can be bound to a
system task by a control flow. In this case, the system task has the role of an
event handler. When the subscribed event occurs, a new instance of the system
task is created and its execution is started. Event consumers that are subscribed
to observer events can be connected to input pins via an object flow. Upon an
observer event, the value of the input pin is updated with the new state of the
observed concept.

Whenever context must be fetched by an application, means to actively pull
information from the concept model are needed. In our task model, these means
are provided by concept queries. A concept query is bound to a concept in the
concept model and connects to a task via an object flow and an input pin. The
task can access the value of the input pin regardless of the data sources bound
to the input pin.

Guard conditions can be bound to control flows and object flows that originate
from event consumers. Guard conditions are formulated over concepts. In case
of control flows, the control is passed to a task only if the guard condition of the
control flow is fulfilled. Using identical modelling techniques, control flows can
therefore be controlled by context and application data. For example, assume
that the number of records stored in a database is modelled as a concept. A
guard condition that requires the number of records in the database to be zero
can prevent the invocation of a system task that deletes the database if it contains
any records.

Guard conditions bound to object flows that originate from event consumers
serve as filters for observer events. They can be formulated over the concept
transported by the observer event. If the guard condition is not fulfilled, the
observer event does not update the value of the input pin.

Fig. 2 shows the novel modelling concepts for context-aware task modelling in
a task model consisting of two interaction tasks (InteractionTask1, Interaction-
Task2) and two system tasks (SystemTask1, SystemTask2).User tasks are omitted
for reasons of brevity. InteractionTask1 and InteractionTask2 can be interacted or-
der independent. SystemTask2 is the event handler for the context event consumer
bound to it. An observer event consumer for the numeric concept SensedValue is
connected to InteractionTask2. The guard condition filters out all events with neg-
ative or zero values of SensedValue, i.e. only positive values of SensedValue are
written to the input pin of InteractionTask2. The InteractionTask2 can only be
completed by the user if the value of the concept SensedValue is larger than ten.

202 T. Hamann, G. Hübsch, and T. Springer

Fig. 2. Task model

4.3 Abstract User Interface Model

The abstract user interface model (AUI) allows modelling abstract multimodal
user interfaces based on abstract interactors as proposed in [2] and [12]. These
are representation- and technology-independent descriptions of user interface
widgets. They are composed to complex abstract user interfaces, which can be
transformed into multiple, technology-specific representations, including versions
for different modalities. In most cases, technology independence alone is not
sufficient to create highly usable user interfaces from abstract user interfaces.
For this reason, AUI refinements that take the context in which a user interface
presented into account are needed [8].

In our approach, AUI refinement is based on the concept of manual adapta-
tion to so called context profiles. A context profile is a list of name-value pairs
that characterize a complex condition (a situation) in terms of device properties,
built-in sensors, and available input and output mechanisms. Fig. 3 shows two
context profiles. The PDA profile describes a device whose keyboard, display, mi-
crophone, and speaker can be utilized for user interaction. The keyboard must be
thumb keyboard with English layout. The display must have QVGA resolution,
which is typical for most PDAs, and landscape format. Audio output can be via
earphone or speaker. The Hands-Free/PDA profile describes a typical hands-free
situation in which the keyboard can not be used for input. The display must have
QVGA resolution in portrait format.

Context profiles can be bound to refined versions of the initial AUI model.
The initial AUI model is generated by a task-to-AUI transformation of inter-
action tasks. For each interaction task, a generic AUI interactor is generated.

A Model-Driven Approach for Developing Adaptive Software Systems 203

Fig. 3. Context profiles

Fig. 4 shows the transformation of a login dialog task model and the initial AUI
model to which it is transformed.

Fig. 4. Interaction task to initial AUI model transformation

AUI refinement is performed on copies of the initial AUI model. The developer
binds each copy to at least one context profile and starts its refinement process.
In this process, concrete interactor types (text input field, select control, button,
. . .) must be assigned to the generic interactors generated by the task-to-AUI
transformation. Furthermore, layouts for an appropriate visual appearance of
the user interface in the situation described by the context profile can be added
(cf. 5). Interactors can also be removed from a refined model if they are in-
appropriate for the situation, e.g. if the device does not support its rendering.
Modality-specific properties like voice input grammars, voice prompts, etc. can
be set as properties of a concrete AUI interactor where applicable.

204 T. Hamann, G. Hübsch, and T. Springer

Fig. 5. Refined AUI models of the login dialog for (a) landscape and (b) portrait
displays

At runtime, evaluation of context profiles is performed by the context ser-
vice to select the appropriate version of the user interface. A context profile
is transformed into a context query, which is evaluated against a concept that
describes the properties of the execution environment. This concept is added
automatically to every concept model.

4.4 Functional Core Adapter Model

Besides enhancing the two particular aspects task and user interface a more
generic way exists for achieving context-awareness of the designed software. This
means is provided by the model representing the functional core adapter (FCA)
– the interface to the business logic of the software.

The FCA model provides two element types – FCA methods and FCA calls.
Methods contain the mapping to methods of the business logic, including their
arguments and results. Calls are instantiations of those methods and therefore
refer to the methods.

4.5 Context Model

Building upon the concept model as common ground the context model refers
to its conceptual facet only. Subject of this model is the provision of context.
A variety of context sources exists all differing in retrieval, storage, and presen-
tation of their information. Hiding that heterogeneity the sources are described
in a uniform way – as so-called context providers – to allow for matching with
potential context consumers.

The context model describes the various types of context providers, which may
be of two different kind – low- or high-level. Low-level providers that retrieve
sensed, profiled or stored context directly from a hardware or software context
source (e.g. sensor, monitor, database) can be described by characterizing their

A Model-Driven Approach for Developing Adaptive Software Systems 205

provided context. Thus the data types and concept from the concept model are
referred to by the context model. High-level providers apply various derivation
schemes for retrieving their provided context and thus must consume other con-
text prior to the derivation of more abstract (or high-level) context. Therefore
high-level providers need additional description of their consumed context.

5 Runtime Environment

The afore mentioned modelling concepts are mapped onto our runtime environ-
ment, which is targeted toward resource-constraint mobile and embedded devices
– implemented in Java ME (CDC 1.1) based on the OSGi platform. Its main
components are: task process engine, context service, and multimodal services
component (cf. 6). For brevity reasons we focus on the context service only.

Fig. 6. Runtime architecture – main components

The context service provides on-demand access to context. Service instances
running on different devices connect to each other and form a distributed context
service. Thus, allowing for context access between sources and consumers – the
adaptive software – even on different devices.

Context propagated from the sources to the consumers is represented based on
a metamodel [13], which is adopted from the topic map and entity-relationship
metamodels. It defines three model element types: Entities represent either real-
world objects or abstract concepts (e.g. a process). Attributes contain the specific
features of the entities and can be of simple or structured type – arranged in
so-called attribute groups. Associations are relationships between two entities.

The different facets of designtime context models are reflected in the runtime
too. There are context, data, and usage models. Provided and consumed context
is specified by so-called context patterns each of them being a triple (m, t, r)
with: a meta type m (entity, attribute, or association), a domain-specific type t,

206 T. Hamann, G. Hübsch, and T. Springer

and an optional restrictive expression r. The pattern (ENTITY,′ person′,′′)
would refer to all entities of type ’person’ without any restriction.

Runtime Context Model: For uniform management each context source is
wrapped in a so-called context provider – a lightweight component with uniform
interface. Due to the nature of its underlying context source (e.g. wireless sensor,
database, application) a provider may be subject to software de-/installation,
plug-and-play, or wireless connectivity problems and thus dynamically available.

A provider is self-descriptive since a single service instance cannot be expected
to a priori “know” all potential providers that may be encountered during its
life cycle. Upon detection a provider is examined by the broker component using
the provider API to retrieve its description. The main part of this description
consists of the provided and consumed context, each represented by a set of
context patterns.

Runtime Usage Model: Context consumers specify their needs by using con-
text patterns too. They are passed as call parameters to the Query & Subscribe
API resulting in either synchronous responses or asynchronous notifications –
both containing references to the current context.

The context usages of the task, AUI, and FCA models are implicitly contained
in the context patterns and the specific API calls performed by the respective
code at runtime. In figure 6 this is shown by the arrow from the task process
engine and the multimodal services component accessing the Query & Subscribe
component.

Runtime Data Model: Since the context service is executed on resource-
constraint devices it does without expensive model validation mechanisms. In-
stead the service performs a matching algorithm based on consumed and pro-
vided context patterns. This matching is applied for binding suitable providers
when a consumer specifies a pattern in an API call.

Java classes exist corresponding to all data types defined in the concept model
– either by mapping to native Java classes or by generating application-specific
ones. The dynamic availability of providers applies to their provided context
too. Instead of caching context we opted to decouple the information access
in order to prevent consumption of stale context. Therefore, context is kept in
data objects that are hidden from the consumers by access objects. The latter
are maintained by the Query & Subscribe component whereas the former are
updated by the providers, while being created by the manager component.

When the provider of a certain data object becomes unavailable subsequent con-
sumer calls to its access object will cause the binding to an alternative provider.
When this is unsuccessful the consumer receives an according notification.

6 Validation

We have successfully validated our approach by developing a context-aware plant
maintenance application. This application consists of three tools that (a) support

A Model-Driven Approach for Developing Adaptive Software Systems 207

Fig. 7. Screen shots of the plant maintenance application: (a) task organization tool,
(b) task organization tool without location context, (c) sensor monitoring tool, (d)
sensor history tool

maintenance workers in organizing their work and (b) allow the remote monitoring
of plant parameters and (c) their history. It exploits all features of context-aware
software design provided by our models.

The task organization tool (cf. 7a) demonstrates the use of location informa-
tion and UI adaptation. In our scenario, a list of tasks is assigned to a mainte-
nance worker by his manager. A maintenance task is composed of information
about the location (name and geo-coordinates of the plant) where the task is to
be performed, its priority, a short description, and list of detailed instructions.
This information is conveyed by a warning message area, an electronic map,
and a task list. Symbols in the map indicate the task locations. Observer events
generated by a location context provider, which wraps the GPS sensor of the
PDA running the application, are utilized to update the marker that indicates
the worker’s position on the map (cf. 7a). The warning message area is updated
from “OK” to “CAUTION” whenever the worker is in the proximity of plants
that process inflammable or explosive substances. This update is initiated by ob-
server events that are produced by a remote context provider that consumes the
output of the location context provider and determines the hazard classification
of the area around that geo-coordinate.

UI adaptation is demonstrated in fig. 7b. When location information is not
available, e.g. because there is no GPS signal or because the PDA is not equipped
with a GPS sensor, a reduced UI of the task organization tool is loaded. It omits
the map and the warning message area since they require location information.

208 T. Hamann, G. Hübsch, and T. Springer

Several components of a plant are monitored by sensors. A sample remote
monitoring tool (Pipe Monitor, cf. 7c) aggregating pressure, temperature and
flow rate information from a hot water pipe has been realized for validation
purposes. The values shown by the Pipe Monitor are delivered by observer events
from corresponding sensors and update the system output accordingly.

To demonstrate pull access to context via context queries, we have imple-
mented sensor history providers for the pipe monitor’s sensors. Sensor history
providers can be queried for the sensor readings of the last 15 minutes. The query
results returned by the history providers can be accessed by the Pipe Monitor
History tool (cf. 7d).

7 Conclusion and Outlook

We have presented a software development methodology for adaptive, multi-
modal applications. It comprises a process model, a set of models and trans-
formations and a runtime environment. Especially, we presented a concept for
modelling system and user interface adaptation based on context. Thus, with
our approach, the relation between context and adaptation processes is explic-
itly definable. Using a model-driven approach, these definitions can be trans-
formed semi-automatically into code, which significantly eases the development
of adaptive software. Our validation example has demonstrated the feasibility
of the approach presenting a context-aware application able to adapt its func-
tionality and user interaction to the execution environment. Therefore, we have
involved several context sources, which are managed by a peer-to-peer context
service.

In the future we will extend the existing methodology and development en-
vironment. Furthermore, we plan to implement further applications to validate
how our model-driven approach can reduce development effort.

References

1. Bardram, J.E.: The Java Context Awareness Framework (JCAF) – a service infras-
tructure and programming framework for context-aware applications. In: Gellersen,
H.-W., Want,R., Schmidt,A. (eds.) PERVASIVE2005. LNCS, vol. 3468, pp. 98–115.
Springer, Heidelberg (2005)

2. Burmeister, R., Pohl, C., Bublitz, S., Hugues, P.: Snow - a multimodal approach
for mobile maintenance applications. In: 15th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 131–136
(2006)

3. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing
environments (2003)

4. Christopoulou, E., Goumopoulos, C., Kameas, A.: An ontology-based context man-
agement and reasoning process for ubicomp applications. In: sOc-EUSAI 2005: Pro-
ceedings of the 2005 joint conference on Smart objects and ambient intelligence,
pp. 265–270. ACM Press, New York (2005)

A Model-Driven Approach for Developing Adaptive Software Systems 209

5. Fuchs, F., Hochstatter, I., Krause, M., Berger, M.: A meta-model approach to
context information. In: Proceedings of Third IEEE International Conference on
Pervasive Computing and Communications Workshops, pp. 8–14. Cambridge Uni-
versity Press, Cambridge (2005)

6. Grossmann, M., Bauer, M., Hönle, N., Käppeler, U.-P., Nicklas, D., Schwarz, T.:
Efficiently managing context information for large-scale scenarios. In: Proceedings
of the 3rd IEEE Conference on Pervasive Computing and Communications, Kauai
Island, Hawaii (March 2005)

7. Gu, T., Pung, H.K., Zhang, D.Q.: Toward an osgi-based infrastructure for context-
aware applications. IEEE Pervasive Computing 3(4), 66–74 (2004)

8. Hübsch, G., Springer, T., Spriestersbach, A., Ziegert, T.: An Integrated Platform
for Mobile, Context-Aware, and Adaptive Enterprise Applications, pp. 1105–1124.
Physica-Verlag (2005)

9. Henricksen, K., Indulska, J., McFadden, T., Balasubramaniam, S.: Middleware for
distributed context-aware systems. In: Meersman, R., Tari, Z. (eds.) OTM 2005.
LNCS, vol. 3760, pp. 846–863. Springer, Heidelberg (2005)

10. Korpipää, P., Mäntyjärvi, J., Kela, J., Kernen, H., Malm, E.-J.: Managing context
information in mobile devices. IEEE Pervasive Computing 2(3), 42–51 (2003)

11. Livingstone, K.H.S., Indulska, J.: Towards a hybrid approach to context mod-
elling, reasoning and interoperation. In: Ubi-Comp 1st International Workshop on
Advanced Context Modelling, Reasoning and Management, pp. 54–61 (2004)

12. Mueller, W., Schaefer, R., Bleul, S.: Interactive multimodal user interfaces for
mobile devices, page 90286.1 (2004)

13. Object Management Group, Inc. Ontology definition metamodel. OMG Adopted
Specification ptc/2007-09-09, OMG (November 2007)

14. Object Management Group, Inc. MOF QVT. Final Adopted Specification ptc/05-
11-01, OMG (November 2005)

15. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A diagrammatic notation
for specifying task models. In: INTERACT 1997: Proceedings of the IFIP TC13
International Conference on Human-Computer Interaction, London, pp. 362–369.
Chapman and Hall, Ltd., Boca Raton (1997)

16. Popma, R.: JET tutorial part 1 (introduction to jet). Technical report, Azzurri
Ltd. (2003)

17. Ziegert, T., Lauff, M., Heuser, L.: Device independent web applications – the author
once - display everywhere approach. In: Koch, N., Fraternali, P., Wirsing, M. (eds.)
ICWE 2004. LNCS, vol. 3140, pp. 244–255. Springer, Heidelberg (2004)

Model-Based Performance Instrumentation of

Distributed Applications

Jan Schaefer1,2, Jeanne Stynes2, and Reinhold Kroeger1

1 Wiesbaden University of Applied Sciences
Distributed Systems Lab

Kurt-Schumacher-Ring 18, D-65197 Wiesbaden, Germany
{jan.schaefer,kroeger}@informatik.fh-wiesbaden.de

2 Cork Institute of Technology
Department of Computing

Rossa Avenue, Bishopstown, Cork, Ireland
jeanne.stynes@cit.ie

Abstract. Problems such as inconsistent or erroneous instrumentation
often plague applications whose source code is manually instrumented dur-
ing the implementation phase. Integrating performance instrumentation
capabilities into the Model Driven Software Development (MDSD) process
would greatly assist software engineers who do not have detailed knowl-
edge of source code instrumentation technologies. This paper presents an
approach that offers instrumentation support to software designers and
developers. A collection of instrumentation patterns is defined to repre-
sent typical instrumentation scenarios for distributedapplications. AUML
profile derived from these patterns is then used to annotate UML models.
Based on suitable code generation templates, the annotated models are
transformed into instrumented source code for different instrumentation
APIs. A prototypical implementation, including an adaptation to Web ser-
vices, was evaluated in a lab environment.

1 Introduction

In recent years, Model Driven Software Development (MDSD) has become in-
creasingly popular1 because several MDSD tools have reached a sufficient level
of maturity. In MDSD, code generators are used to generate application source
code from technical models based on transformation templates. Using this ap-
proach, source code for specific types of platforms and applications can be cre-
ated efficiently. Today, several Open Source MDSD code generator frameworks
are available and used in professional projects, in particular AndroMDA2 and
openArchitectureWare3 have become popular in recent years. Because of diverse
application requirements, extensions containing specific templates and UML pro-
files for these frameworks are constantly being developed. So far, these extensions
1 http://www.voelter.de/data/articles/cgn.pdf
2 http://www.andromda.org
3 http://www.openarchitectureware.org

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 210–223, 2008.
c© IFIP International Federation for Information Processing 2008

http://www.voelter.de/data/articles/cgn.pdf
http://www.andromda.org
http://www.openarchitectureware.org

Model-Based Performance Instrumentation of Distributed Applications 211

cover mainly middleware infrastructure aspects (e.g. for EJB, CORBA, Spring,
Hibernate). Extensions supporting mandatory application management aspects
like security and performance are still rare.

Performance is an important aspect of applications, even more so in hetero-
geneous distributed systems. Thus, continuous performance tests, performance
validation – especially after modifications or redesigns – and Service Level Man-
agement (SLM) at runtime are necessary tasks during the lifecycle of applica-
tions. This can be achieved by applying Performance Instrumentation, which
can be defined as the process of adding non-functional code to an application to
provide performance analysis information at runtime.

Instrumentation is usually performed during the implementation and testing
phases, when software developers analyse the application’s source code. Once
relevant positions have been identified (e.g. based on their importance for the ap-
plication), instrumentation statements are inserted into the source code. Manual
instrumentation always carries the potential of errors or unwanted side-effects:
the instrumentation might be incomplete, too detailed (and therefore slow down
the application) or too sparse. Tools supporting developers during the instru-
mentation process greatly reduce the probability that these common mistakes
will occur. More importantly, enhanced tool support removes the developers’
need to acquire detailed knowledge of the applied instrumentation technology
before the instrumentation process is carried out.

An instrumentation has to be integrated with the underlying application ar-
chitecture, which can become a time-consuming and difficult task if the per-
formance aspect is not considered until the end of the development process.
Unfortunately this occurs frequently even though application performance and
responsiveness are major acceptance factors for end users. Once applications
are deployed or have evolved over time, there may exist immobile technical or
architectural dependencies that must be observed if monitoring capabilities or
performance-related changes have to be implemented. Such dependencies can be
avoided by implementing performance monitoring capabilities as early as possi-
ble, preferably before the first pieces of source code are written. In this paper,
logging and performance measurements (e.g. execution times of work units) are
considered as the primary goals of performance instrumentation.

Based on Pooley’s definition [1] of Software Performance Engineering, a per-
formance engineering process integrating instrumentation with the MDSD
methodology can be defined as follows: UML application models are annotated
with an UML instrumentation profile. The resulting annotated models are trans-
formed into instrumented source code using specific templates developed for a
MDSD framework. This enables software designers to define performance mon-
itoring capabilities in UML application models during the design phase with-
out detailed knowledge of the instrumentation technologies that are used in the
generated code. If standardised instrumentation APIs such as log4j 4 and Ap-
plication Response Measurement5 (ARM) are targeted during code generation,

4 http://logging.apache.org/log4j
5 http://www.opengroup.org/arm

http://logging.apache.org/log4j
http://www.opengroup.org/arm

212 J. Schaefer, J. Stynes, and R. Kroeger

the runtime performance data produced by the instrumented application can be
processed easily by enterprise management systems such as IBM Tivoli6 or HP
Business Technology Optimization Software7. Therefore, the focus of this paper
is on modelling and transformation of performance annotations.

This introduction is followed by a presentation of the state of the art in appli-
cation performance instrumentation in section 2. Section 3 introduces the unique
instrumentation approach developed for this paper. A performance engineering
process incorporating this approach is presented in section 4, followed by its pro-
totypical implementation in section 5 and a case study in section 6. This paper
closes with a conclusion and a look at possible future work in section 7.

2 Related Work

Instrumentation can be required and performed during almost any phase of an
application’s lifecycle. This section introduces common approaches to software-
based instrumentation that support developers in the process.

Apart from the risk of erroneous instrumentation, manual source code in-
strumentation can lead to a possibly unwanted mixture of functional (business
logic) and non-functional (instrumentation) source code. Thus, instrumentation
approaches using Aspect-Oriented Programming (AOP), where no instrumenta-
tion code has to be written repeatedly once templates are created, have been
implemented in recent years [2] [3]. However, aspect compilers such as AspectJ
which are used by these approaches often support granularity at method invoca-
tion level only. Another drawback is the lack of correlation functionality (i.e., the
absence of facilities for semantically related instrumentation points to reference
each other). This is not a problem for independent logging instrumentation but,
especially in distributed systems, end-to-end monitoring based on related mea-
surements can be mandatory to track requests on their way through complex
workflows. Also, current AOP-based instrumentation approaches can be used
only from the implementation phase on.

Binary code instrumentation is necessary if the source code of the to be in-
strumented application is not available or must not be modified. This approach
is often used in conjunction with the Java programming language [4], because
Java offers standardised interfaces for modifications to bytecode even at runtime
(e.g. engaging bytecode running in the Java Virtual Machine (JVM) [5] [6]).
Although arbitrary positions in binary code can be addressed in general, this
instrumentation approach suffers from similar limitations as AOP. Correlation
facilities are not provided, and obviously this approach can only be used if binary
code for the targeted application already exists. The abstraction ability of binary
code (or machine code for that matter) is too limited because it is supposed to
be a concrete (platform-specific) implementation of the application.

In recent years, the need for instrumentation led to the development of mid-
dleware frameworks that already contain fixed instrumentation capabilities as
6 http://www.ibm.com/software/tivoli
7 http://www.managementsoftware.hp.com

http://www.ibm.com/software/tivoli
 http://www.managementsoftware.hp.com

Model-Based Performance Instrumentation of Distributed Applications 213

developed by the vendor. For example, IBM instrumented8 their DB2 Universal
Database9 (version 8.2 or later) and WebSphere Application Server10 (version
5.1.1.1 or later). And starting with Java 5, even the standard edition JVM con-
tains Java Management Extensions11 (JMX), which support state monitoring of
applications at runtime.

Another approach suited to instrumenting framework-based client/server ap-
plications uses the widely supported message handler framework (also known as
interceptor or listener framework). It is part of the CORBA [7] and Java API
for XML Web Services (JAX-WS) [8] specifications and supported by applica-
tion servers such as the Apache Tomcat12 and JBoss13 application servers. This
approach relies on instrumented components that are plugged into the frame-
works by configuration transparently to the application [9] [10]. This approach
can even be combined with legacy middleware technologies if supported by a
connector such as an Enterprise Service Bus (ESB).

All these instrumentation alternatives cannot be integrated with the MDSD
process because they do not feature modelling capabilities. However, several
approaches for integrating performance aspects with UML models have been
developed. The definition of the UML Profile for Schedulability, Performance,
and Time14 (UML-SPT, now known as MARTE) sparked a vast collection of
research projects with the intention to implement the SPE requirements [11]. So
far, work based on the UML-SPT primarily focussed on systems with strict tim-
ing and performance constraints (e.g. real-time systems). The process of creating
a complete application model with performance annotations for each component
can become very time-consuming. Nevertheless, this is common practice, espe-
cially for developing embedded systems. This design detail may be mandatory
for simulating and validating system properties prior to implementation [12],
but it removes the advantage of relieving developers during the instrumenta-
tion process if the supporting solution increases the modelling effort drastically.
In addition, the modelling effort required for complying with the UML-SPT is
greater than what is required for basic application monitoring.

Performance prediction is based on models like Petri Nets [13] [14], Queue-
ing Models or Markov Chains [15] [16]. These approaches focus on stochastic
methods for predicting qualitative (correctness) and quantitative (performance)
applications properties or even complex systems. Pooley proposes generating
such models from UML models, which is used seldom in a traditional software
development process as software designers and developers are usually unfamiliar
with this task. Furthermore, in order to be of practical relevance, queueing mod-
els have to be calibrated based on runtime measurement data, which must be

8 http://www.ibmsystemsmag.com/i5/june05/features/9060p3.aspx
9 http://www.ibm.com/db2

10 http://www.ibm.com/websphere
11 http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement
12 http://tomcat.apache.org
13 http://www.jboss.org/products/jbossas
14 http://www.omg.org/technology/documents/formal/schedulability.htm

 http://www.ibmsystemsmag.com/i5/june05/features/9060p3.aspx
http://www.ibm.com/db2
http://www.ibm.com/websphere
 http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement
http://tomcat.apache.org
http://www.jboss.org/products/jbossas
 http://www.omg.org/technology/documents/formal/schedulability.htm

214 J. Schaefer, J. Stynes, and R. Kroeger

collected using some sort of monitoring anyway [17]. If the sample data used for
this purpose is too limited or generally inappropriate, the results of the subse-
quent analysis will not reflect the real system behaviour. Thus, queueing models
cannot replace but can complement a concrete instrumentation.

3 Model-Based Performance Instrumentation

As mentioned in section 1, this paper focuses on the integration of logging and
performance measurement capabilities with the MDSD process. This section
presents the approach to integrate an abstract representation of instrumentation
information with application models.

3.1 Instrumentation Patterns

Figure 1 presents a service invocation as an instrumentation scenario example
which could be instrumented by defining two related execution time measure-
ments. The server-side measurement corresponds to the execution time of the
service (t2→3), the client-side measurement represents the response time visible
to the client (t1→4). If these measurements were linked, they would allow an
analysis of execution and response time of each processed request.

Fig. 1. Instrumentation Scenario

This paper defines a collection of Instrumentation Patterns representing ab-
stract instrumentation scenarios. By referring to this pattern collection, software
designers can determine possible instrumentation scenarios in their application
models. The pattern collection offers additional guidance to designers because
the relationships between determined instrumentation points might not always
be recognisable.

The pattern collection can be split into two groups: Basic Patterns and Com-
plex Patterns [18]. Basic patterns are the building blocks of complex patterns. In
addition to the patterns introduced in this paper, new patterns can be defined
based on either basic or complex patterns.

Instrumentation points and their purpose are described in more detail by their
Role in a pattern. Each pattern defines a set of roles detailing the responsibilities
of the associated points (e.g. instrumentation points can take either “start” or
“stop” role in a measurement). An instrumentation point can be part of multiple
basic patterns, which themselves can be part of multiple complex patterns.

Model-Based Performance Instrumentation of Distributed Applications 215

The instrumentation of an application – the collection of all its pattern in-
stances – can be seen as a directed graph: instrumentation points are vertices
of this graph and their connecting edges can be annotated to further describe
the relationships between the instrumentation points. A pattern (a subgraph)
is described by one (basic pattern) or more (complex pattern) tuples. Basic
instrumentation patterns describe simple workflow elements that can occur in
applications. Figure 2 displays the three basic patterns defined by this paper.

Fig. 2. Basic Instrumentation Patterns

The Event Pattern is the simplest instrumentation pattern. It is used for
defining single, unrelated instrumentation points. Thus, it is usually represented
by a log or status message (see example A in figure 2). The name of the only
role in this pattern is source, because the point in this pattern is the source of
the event.

The Trigger Pattern defines an event that sets off an arbitrary number of other
events. A triggered event is causally dependent on its trigger event. The trigger
event and the triggered event can be processed by a single system component
or by multiple (distributed) components. Triggers support synchronous and
asynchronous application execution scenarios. (see example B/C in figure 2).
The are two roles in this pattern: activator and receiver. A trigger event also can
be blocked (e.g. in a queue).

The Action Pattern defines two related Events (a start and a stop Event)
which are processed by a single system component or a pair of related com-
ponents. An Action spans a certain period of an application’s execution time
(see example D in figure 2) and can be seen as a specialisation of the Trigger
pattern. The Action pattern also has two roles, namely start and stop.

The RPC Pattern shown in figure 3 is an example of a complex pattern.
[19] contains a more detailed description of the pattern collection including the
Multitrigger and Sequence patterns. The RPC pattern represents a synchronous
or asynchronous message exchange. The activities on client and server component
can be seen as related work units. Thus, the server-side activity is semantically
nested in the client-side activity. This describes a classic Remote Procedure Call

216 J. Schaefer, J. Stynes, and R. Kroeger

Fig. 3. RPC Pattern

(RPC) interaction in which server activities are triggered by client invocations.
This pattern is a composition of four basic patterns: two Actions (client-side
activity and server-side activity) and two Triggers (request and response).

3.2 UML Instrumentation Profile

The abstract graphical pattern representation must be mapped to appropriate
UML entities to enable software designers to use these patterns in application
models. The UML Instrumentation Profile shown in figure 4 represents a map-
ping of the patterns introduced in section 3.1 to UML. The stereotypes in this
profile contain abstract instrumentation information required for logging and
performance measurements.

The abstract Pattern stereotype contains shared tagged values, which are re-
quired by all basic and complex instrumentation patterns. The id attribute (or
tagged value) contains a unique (human-readable) name of the Instrumentation
Entity, which can be either a point or a pattern. The id can be used to name the

Fig. 4. Basic instrumentation stereotypes

Model-Based Performance Instrumentation of Distributed Applications 217

entity. The message attribute contains a message describing the entity. Depend-
ing on the instrumentation APIs provided by the code generator, the message
might reemerge in the generated instrumentation code. roles is an enumeration
literal containing the role(s) that an entity takes in patterns (see section 3.1).
The role merely can be used to supply additional detail to instrumented enti-
ties which allows the code generator to generate specific instrumentation code
(e.g. for a selected middleware platform). The severity is also an enumeration
literal and defines the importance level of the output of this instrumented en-
tity. Based on the common features of today’s logging frameworks, the abstract
pattern supports the levels Info, Debug, Warn, Error, Fatal and Trace. The
default importance level is set to Debug.

The Event stereotype does not introduce additional tagged values. It can be
attached to UML operations. During code generation, the Event is typically
implemented by a logging statement.

The Action stereotype introduces an additional tagged value named instru-
mentationType. The instrumentation type is an enumeration literal that can be
set to either Logging or Measurement. Depending on its value, source code for
logging or response time measuring will be generated.

The Trigger stereotype and the complex stereotypes are not graphically rep-
resentable in UML class diagrams, which have been investigated for this paper,
using UML notation. This diagram type supports static associations between
classes, but it is impossible to mark source and target instance of an opera-
tion invocation nor patterns spanning multiple UML entities. The case study in
section 6 discusses this limitation further.

4 Performance Engineering Process

This section introduces a performance engineering process, illustrated in
figure 5, that is compatible with the Software Performance Engineering approach
described by Pooley in [1]. It is based on UML, the UML instrumentation profile
as introduced in section 3.2 and the openArchitectureWare (oAW) MDSD code
generation framework for Java source code generation, but the methodology can
be transferred to other frameworks and programming languages easily. For illus-
tration purposes, the subsequent description uses oAW-specific terminology.

Before the instrumentation process is started, the instrumentation profile is
imported into the software designer’s UML modelling tool. During creation and
analysis of the UML application models, the designer can annotate designated
instrumentation points using the stereotypes of the instrumentation profile. Once
this process has been finished, the instrumented model is exported to XMI.

The code generation workflow of the oAW framework is configured to im-
port and parse the instrumented model using the profile metamodel. The oAW
code generator component generates pure Java source code for uninstrumented
UML elements (using generic JavaBasic Templates provided by the Fornax Plat-
form15) and instrumentation code for instrumented elements (using custom In-
15 http://www.fornax-platform.org

http://www.fornax-platform.org

218 J. Schaefer, J. Stynes, and R. Kroeger

Fig. 5. Performance Engineering Process

strumentation Templates developed for processing stereotyped UML elements).
Figure 5 also exemplifies a UML class extended with the Event stereotype and
the resulting instrumented Java source code.

Once the generated instrumented application source code is completed by im-
plementing the application’s business logic, the Instrumented Application gen-
erates Performance Data at runtime, which can be processed (i.e. displayed,
analysed) using a Management System. In case common instrumentation APIs
and libraries are used for generating the instrumentation code, existing enterprise
management systems can be used for the analysis.

The approach presented in this paper does not dictate following the MDSD ap-
proach during development of all application components. Modelling and instru-
mentation can also take place in the beginning only, followed by more traditional
source code-based development afterwards. However, the presented approach can
be integrated seamlessly into a MDSD process.

5 Prototypical Implementation

An overview of the oAW-based code generation process has already been given
in section 4. Custom instrumentation templates have been developed for gener-
ating instrumentation code. oAW features an AOP mechanism supporting the
extension of existing templates. The instrumentation templates extend the For-
nax JavaBasic templates just as the instrumentation profile extends UML. The
oAW workflow presented in figure 5 is clarified by figure 6.

The instrumentation extension developed for oAW contains templates that
support code generation for the logging and time measurement instrumentation
goals. The prototypical implementation creates a source code representation of
the instrumentation patterns introduced in section 3.1 to the well-known log4j

Model-Based Performance Instrumentation of Distributed Applications 219

Fig. 6. oAW Code Generator Instrumentation Extension

(for logging) and ARM 4.0 (for measuring) APIs. ARM is a widely acknowl-
edged Open Group standard for performance measurements within distributed
applications. Within ARM, Response Times are execution time measurements of
work units termed ARM Transactions within distributed applications. To avoid
dependencies on global time, each measurement has to start and end within the
same process. However, the standard allows the correlation of semantically re-
lated measurements, even across host boundaries. For this purpose, ARM defines
ARM Correlators, which are unique tokens assigned to each ARM transaction.
ARM is capable of recording single ARM transactions, which is a requirement
for the instrumentation of critical applications, and supports direct integration
of applications with enterprise management systems. This creates a comprehen-
sive end-to-end monitoring capability, including the measurement of application
performance, availability, usage and end-to-end transaction response times. To
effect this integration, ARM calls must be present in the application source code,
which are processed by an ARM library during application execution. ARM de-
fines C and Java APIs.

Both code generators retrieve the required instrumentation statements from
textual code templates. These templates have been developed based on the Ve-
locity16 template engine, so the targeted instrumentation APIs can be exchanged
without modifying the code generators’ source code. For Events, logging state-
ments are placed at the beginning of generated methods stubs; for Actions, two
measurement statements are placed at beginning and end of method stubs. ARM
measurement data map to the corresponding instrumented source code locations
containing start() and stop() calls on the transaction object. Therefore, a re-
sponse time value as defined in the ARM 4.0 API can only express the time
span referenced by two instrumentation points located in the same application
instance and thus on the same host.

Depending on the instrumentation stereotypes and tagged values of each in-
strumentation point detected in a parsed UML model, the instrumentation tem-
plates invoke the appropriate code generator for generating either measuring
or logging statements. The positions, in which these statements are placed, are
shown in figure 7.

16 http://velocity.apache.org

http://velocity.apache.org

220 J. Schaefer, J. Stynes, and R. Kroeger

Fig. 7. Instrumentation Code Insertion Positions

6 Case Study: Web Services

The performance engineering process has been applied to several examples in a
lab environment (i.e. without real-world application and work load). One exam-
ple is presented in this section to demonstrate the applicability of the process
to modern middleware-oriented applications and the flexibility of the developed
prototype.

As discussed in section 3.2, complex patterns like the RPC pattern cannot be
applied to UML class diagrams graphically. On the other hand, the RPC pattern as
presented in section 3.1 is essential when instrumenting distributed applications.
In order to solve this conflict, an adaptation has been developed which uses roles
to textually represent the RPC pattern in UML class diagrams, so that the code
generator can generate appropriate instrumentation code.

For the adaptation to Web service facilities, the client-side and the server-side
Actions were outfitted with their respective roles (as introduced in section 3.1)
in the UML diagram, which were then interpreted by the code generation tem-
plates appropriately. First, JAX-WS-based Web service communication, which
is supported by major Web service frameworks such as Apache Axis 2 17, Apache
CXF 18 and even Java 6 19, was analysed for facilities supporting ARM corre-
lation of distributed measurements. Figure 8 shows the resulting exchange of a
correlation token (CT) between client and Web service based on the Web ser-
vice context and message handler facilities. The generated instrumentation code
inserts an ARM correlator into the Web service context, which is attached as
metadata to the outgoing request by a message handler. On the service side, an-
other message handler extracts the correlator and puts it into the context. The
generated instrumentation code for the service then uses the received correlator
as parent correlator for its ARM measurement.

The case study showed that the model-based instrumentation approach can
be applied to middleware-oriented applications, although adaptation is required
for each additional framework to be supported. The amount of modifications
17 http://ws.apache.org/axis2
18 http://incubator.apache.org/cxf
19 http://java.sun.com/javase

http://ws.apache.org/axis2
http://incubator.apache.org/cxf
http://java.sun.com/javase

Model-Based Performance Instrumentation of Distributed Applications 221

Fig. 8. JAX-WS Facilities in Web Service Interaction

required for adapting the code generator, however, was small so this does not
pose a grave disadvantage. A look at the MDSD template collection hosted by
Fornax confirms that the adaptation requirement is a general limitation of MDSD
code generation: generic templates result in generated source code that requires
comprehensive manual additions (thus limiting the benefit of code generation),
and specific templates are limited in their applicability. There simply is no generic
yet flexible solution appropriate for a broad palette of instrumentation scenarios.

Although the prototype is based on and integrated with openArchitecture-
Ware, the presented approach can also be implemented in alternative MDSD
code generation frameworks, programming languages and middlewares. Depend-
ing on the extension capabilities of the target platforms, the oAW-independent
Java code generators and velocity templates might even be reusable.

7 Conclusion and Future Work

This paper presented an approach to model-based performance instrumentation
of distributed applications in accordance with Pooley and modern MDSD-based
software engineering processes. The performance aspect has been integrated into
the MDSD process so that software designers can continue to use their existing
UML modelling tools to instrument application models. With the collection of
instrumentation patterns presented here in mind, designers are able to identify
interactions within the models that are possible candidates for instrumentation.
A drawback of the UML instrumentation profile based on these patterns is that it
is a custom development. However, existing profiles for integrating performance
annotations with UML models (such as the UML-SPT/MARTE) lacked essential
features due to their emphasis on real-time systems modelling. The custom-
designed profile defined here suffers from the risk of being outdated by standards
developed in the future.

The prototypical implementation of the architecture was evaluated in a case
study which demonstrated the overall usability and adaptability of the approach.
The tests showed that comprehensive code generation can be achieved for specific
usage scenarios (here: JAX-WS-basedWeb services)with onlyminormodifications

222 J. Schaefer, J. Stynes, and R. Kroeger

to the otherwise generic templates. This can have a great impact on the produc-
tivity of a software project: a developer familiar with the environment executes
the adaptations required for integrating a new communications framework, and
all peers can use and profit from the generated instrumentation. Further evalua-
tion of the methodology and the prototype is part of an ongoing research project
which allows applying the approach presented here to an enterprise application.

Although template-based code generation only offers limited flexibility, proj-
ects such as the Fornax Platform, which concentrates on developing and pro-
viding extensions to widely used MDSD frameworks, help create a toolbox for
MDSD which should contain something useful for almost any software develop-
ment project. So far, the available extensions are mostly middleware-specific.
Increasing acceptance and usage of MDSD technologies in professional soft-
ware development, however, might spark the interest in extensions for generating
source code for non-functional application properties like management and se-
curity, which could be combined with existing templates. This would effectively
add an additional layer on top of the currently available communication- and
infrastructure-centric templates.

As UML class diagrams are the most popular diagram type today, they were
initially investigated for applicability of the instrumentation profile. The result
showed that class diagrams are not ideally suited for instrumenting distributed
applications. For example, dynamic interactions between distributed entities (e.g.
Remote Procedure Calls) cannot be described sufficiently. But for developing
the performance engineering process, class diagrams were the best choice, based
on the fact that most available resources for MDSD frameworks rely on this
diagram type. The evaluation of additional diagram types for integration with the
instrumentation patterns and the profile (e.g. UML sequence and state diagrams)
has already been started.

References

1. Pooley, R.: Software engineering and performance: A roadmap. In: ICSE 2000:
Proceedings of the Conference on The Future of Software Engineering, pp. 189–
199. ACM Press, New York (2000)

2. Krishnamurthy, R.: Performance Analysis of J2EE Applications Using AOP Tech-
niques (2004), http://www.onjava.com/pub/a/onjava/2004/05/12/aop.html

3. Weimer, C.: IDE-gestützte Generierung von Quellcode zur Instrumentierung von
Anwendungen. FH Wiesbaden (2005)

4. WO 03/062986 A1: Flexible and extensible java bytecode instrumentation system.
Patent (July 2003)

5. Buytaert, D., Maebe, J., Eeckhout, L., Bosschere, K.D.: Building Java program
analysis tools using Javana. In: OOPSLA 2006: Companion to the 21st ACM SIG-
PLAN conference on Object-oriented programming systems, languages, and appli-
cations, pp. 653–654. ACM Press, New York (2006)

6. US 2002/0152455 A1: Dynamic instrumentation of an executable program. Patent
(October 2002)

7. Wegdam, M., van Halteren, A.: Experiences with CORBA interceptors (2000),
http://www.comp.lancs.ac.uk/computing/rm2000/papers/20-aacentcweg.pdf

http://www.onjava.com/pub/a/onjava/2004/05/12/aop.html
http://www.comp.lancs.ac.uk/computing/rm2000/papers/20-aacentcweg.pdf

Model-Based Performance Instrumentation of Distributed Applications 223

8. Pulavarthi, R.: Writing a Handler in JAX-WS (2006), http://java.sun.com/

mailers/techtips/enterprise/2006/TechTips_June06.html

9. Schmid, M., Thoss, M., Termin, T., Kroeger, R.: A Generic Application-Oriented
Performance Instrumentation for Multi-Tier Environments. In: 10th IFIP/IEEE
International Symposium on Integrated Network Management (IM 2007), pp. 304–
313. IEEE, Los Alamitos (2007)

10. Debusmann, M., Schmid, M., Kroeger, R.: Measuring End-to-End Performance of
CORBA Applications using a generic instrumentation Approach. In: Corradi, A.,
Daneshmand, M. (eds.) Proceedings of the Seventh IEEE Symposium on Comput-
ers and Communications ISCC 2002, IEEE, Los Alamitos (2002)

11. Smith, C.U., Williams, L.G.: Performance and Scalability of Distributed Software
Architectures: An SPE Approach (2002)

12. Gomez-Martinez, E., Merseguer, J.: A Software Performance Engineering Tool
based on the UML-SPT. In: QEST 2005: International Conference on the Quanti-
tative Evaluation of Systems (Proceedings), p. 247. IEEE Computer Society, Los
Alamitos (2005)

13. Anglano, C.: Performance modeling of heterogeneous distributed applications. In:
MASCOTS 1996: Proceedings of the 4th International Workshop on Modeling,
Analysis, and Simulation of Computer and Telecommunications Systems, p. 64.
IEEE Computer Society, Washington (1996)

14. Dehnert, J., Freiheit, J., Zimmermann, A.: Workflow Modeling and Performance
Evaluation with Colored Stochastic Petri Nets (2000)

15. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions, 2nd edn. Wiley-Interscience, Chichester (2006)

16. Theelen, B., Voeten, J., van Bokhoven, L., van der Putten, P., Niemegeers, A.,
Jong, G.: Performance Modeling in the Large: A Case Study (2001)

17. Xu, J., Oufimtsev, A., Woodside, M., Murphy, L.: Performance modeling and pre-
diction of enterprise JavaBeans with layered queuing network templates. SIGSOFT
Softw. Eng. Notes 31(2), 5 (2006)

18. Kroeger, R., Machens, H.: Trace Framework - Tracing in heterogenen Umgebungen.
Technical report, Wiesbaden University of Applied Sciences (November 2002)

19. Schaefer, J.: Model-based Instrumentation of Distributed Applications. Master’s
thesis, Cork Institute of Technology (2008)

http://java.sun.com/mailers/techtips/enterprise/2006/TechTips_June06.html
http://java.sun.com/mailers/techtips/enterprise/2006/TechTips_June06.html

Implementing a Data Distribution Variant with

a Metamodel, Some Models and a
Transformation

Eveline Kaboré and Antoine Beugnard

Department of Computer Sciences, TELECOM Bretagne, Technopôle Brest-Iroise
CS 83818 – 29238 Brest Cedex 3, France

{eveline.kabore,antoine.beugnard}@enst-bretagne.fr

Abstract. In this paper, we show how model transformations can be used
to implement data distribution features in the software design process of
a component. This approach is based on a single metamodel that defines
data distribution abstractions and on the design of alternatives that are
used to implement each data distribution variant. A model transformation
is associated with the metamodel and the component metamodel we con-
sider as the target. We show that this approach facilitates the derivation
of different implementation strategies from the model of a component. We
illustrate our approach with the example of distributed communication
component software that implements one centralized and two peer-to-peer
variants and we demonstrate the reusability of the transformation.

1 Introduction and Motivation

Models are widely used in science and have become an essential tool for soft-
ware designers and programmers. Models have been used in many development
methods such as SADT [1], JSD [2], etc. They allow the description of different
aspects of a system: structural, functional, behavioural, temporal, etc. Models
also allow the description of the system to be developed at different stages with
various levels of detail.

The Unified Modeling Language(UML) is the last avatar of a standard mod-
elling notation. The way models are produced and elaborated is mainly beyond
the scope of modelling, which relies on good-practice, know-how and more or
less formalized methods. One of the latest great advances in software engineer-
ing has been the introduction of patterns (especially design patterns) as a semi-
formalization of good (or bad) practice.

The formalization and the clarification of the process of elaborating models
are the next challenges. Considering the processes of elaborating and renaming
models as an activity that can be described with a dedicated language is, in our
view, a revolution.

We show in this article how models, metamodels (that can be defined as
model types) and model transformations can be used to automate the design
and implementation process of a distributed software component.

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 224–237, 2008.
c© IFIP International Federation for Information Processing 2008

Implementing a Data Distribution Variant with a Metamodel 225

We are working on a specific component model dedicated to communication
[3,4] and the way to derive an implementation thanks to a process based on model
transformations [5,6]. Many models and metamodels have been developed and a
design process (Fig.1.) has been implemented as a set of model transformations.
The first transformations that were defined introduced the general architecture
of the implementation. In this paper, we describe the way we have automated
the design choice related to data placement and distribution.

Abstract

medium model

Step 1 Manager introduction

Medium deployment
abstract model

Step 2
Design alternative
models (distributed

protocols, data
structure,...)

Designer
Chooses

Step 3 Merging models

Centralized
implementation

model

Distributed
implementation

model

Other
implementation

models

Fig. 1. A view of the full design process of a medium

We argue that if models can describe the product to develop and metamod-
els the abstractions and constraints that are used and reused to define models,
model transformations can be used to describe the process to follow. Hence, we
have analysed the different design choices that are available when implement-
ing communication components. Among them, we have isolated data placement
strategies. We then looked for the abstractions required to describe data place-
ment and elaborated a dedicated metamodel. The validation of this metamodel
was made thanks to the definition of some data placement models such as “cen-
tralized placement” “peer-to-peer Pastry placement strategy” or “peer-to-peer
Chord placement strategy”.

In order to apply these design choices we had to define a model transfor-
mation that was compatible with our target: communication components. The
transformation was hence defined using the two metamodels: the communica-
tion component and the data placement metamodels. This choice guarantees

226 E. Kaboré and A. Beugnard

that the transformation is reusable since applicable to all models that conforms:
any communication component model or any data placement model. Finally,
this approach also ensures extensibility since new data placement models - if
conforming - could be added.

The paper is organized as follows. The next section summarizes the definition
and the deployment target of communication components in order to ensure a
better understanding of metamodels and transformation. Section 3 presents our
approach defining the implementation parts of data distribution problems as
a sequence of transformations in a communication component design process.
Section 4 presents some related work. We conclude the paper in section 5 with
some perspectives of this work.

2 Communication Component: Medium

Definition. A medium is a special component which implements any level com-
munication protocol or system. A medium can implement, for example, a con-
sensus protocol, a multimedia stream broadcast or a voting system. A medium
includes classical component properties such as explicit interface specification,
reusability or replaceability, but a medium is not a unit of deployment. A com-
munication component is a logical architectural entity built to be distributed. An
application is the result of inter-connecting a set of components and mediums.
This is particularly interesting as it can allow the separation of two concerns:
local concerns described by components and communication concerns described
by mediums.

Example. As an illustration, we reuse the example published in [5] of an airline
company with travel agencies located worldwide. A medium can implement the
reservation system and offer services to initialize information on seats, to reserve
seats and to cancel reservations. A reservation application can then be built
by inter-connecting the reservation medium and components representing the
company and the agencies as illustrated in Fig.2.

Deployment Target. In the previous section, we saw that, at the abstract
level, the medium is represented by a single software component. The goal of
the design process is to make the distribution of this abstraction possible. The

Reservation

medium

Airline
company

Agency 1

Agency 2

Service: initialize

Services: reserve or cancel

Fig. 2. An example of a communication component: reservation medium

Implementing a Data Distribution Variant with a Metamodel 227

single software component which represents the medium at the abstract level
is split into small implementation components called role managers. Each role
manager is locally associated with a local component and the medium becomes
a logical unit composed of all the role managers. From a local point of view, each
role manager implements the services used by its associated component. From
a global point of view all the role managers communicate through middleware
and cooperate to realize all the medium services.

Thus, at the deployment level the single software communication component
which represents the medium at the abstract level disappears completely and
the medium becomes an aggregation of distributed role managers. The data
manipulated by the medium at the abstract level are distributed between role
managers.

The next section presents our approach to implement data distribution fea-
tures as a sequence of transformations. We note that the definition of technical
details related to elements which are used to ensure data distribution and access
services is beyond the scope of this paper.

3 Our Approach

3.1 Analysis

Identifying the Source and the Target of the Transformation

Identifying the Source. The introduction of managers is beyond the scope (step 1
in Fig.1.) of this paper. Thus, in the context of this paper, the source of the
transformation is a medium deployment abstract model in which:

1. A manager is associated with each role
2. Each manager implements all the services offered by the medium to its

associated role
3. Each role is separate from the other elements constituting the medium
4. The medium is defined by the aggregation of managers as illustrated in

Fig.3. for the reservation medium.

Identifying the Target. The target of the transformation is a medium implemen-
tation model in which:

1. Items (1) - (4) in the source specification are verified
2. The entity representing the medium in the source specification is deleted
3. Each data managed by the medium in the source specification is distributed

between managers

The description of the target does not provide design alternatives that will
be used to implement data distribution features. It just specifies the set of con-
straints that each final implementation model of the medium should satisfy. Both
source and target descriptions are detailed in [7].

228 E. Kaboré and A. Beugnard

Fig. 3. Structure of the reservation medium after the introduction of managers

Identifying and Separating Design Alternatives. We decompose the prob-
lem of implementing data distribution issues into three design alternatives at the
moment. Other design alternatives related to data distribution such as synchro-
nization or context adaptation aspects can be added in future work.

First Design Alternative: Data Distribution Topology Choice. This involves in
specifying the set of managers that can participate in the distribution of each
data and those that can only have access to it.

Second Design Alternative: Distributed Protocol Choice. This specifies the dis-
tributed protocol (Chord [8], Pastry [9], etc.) that will be used to implement the
distribution strategy of each data.

Third Design Alternative: Distributed Protocol Implementation Algorithm. The
last step is the choice of algorithm that will be used to implement each dis-
tributed protocol services. As an illustration, in the case of the Chord protocol,
the designer can choose the algorithm proposed by MIT [10] or the algorithm
proposed by the MACEDON [11] framework to implement the protocol.

3.2 Automation

In this section, we sketch out metamodels and transformations that we use to
describe and automate the introduction of design alternatives identified in the
previous section in the medium deployment abstract model.

Metamodelling. We define a different metamodel for the source, the target and
distributed protocols in order to ensure a better understanding of metamodels.
Each metamodel is specified with two elements: a UML class diagram describing
the generic structure of the concept and a set of OCL specifications describing
the properties of the concept which cannot be expressed in the class diagram.
For the sake of brevity, we only show the generic structure of each metamodel
in this paper. The full definition of all the metamodels is available in [12].

Implementing a Data Distribution Variant with a Metamodel 229

Medium Deployment Specification Metamodel. Figure 4 shows the generic struc-
ture of a medium during deployment. A manager (</RoleName>Manager) is
associated with each role (</RoleName>). Each manager implements the in-
terface of the services offered by the medium (I<RoleName>MediumServices)
to its associated role and the medium (<MediumName>Medium) is defined by
the aggregation of managers.

Fig. 4. Generic structure of a medium at deployment level

Medium Implementation Specification Metamodel. Figure 5 shows the generic
structure of a medium during implementation. The medium class disappears
completely and the medium data are distributed between managers. The gray
colour delimits our metamodel of a distributed data. Each distributed data is
represented by two elements. The first element (DataManager) ensures the data
distribution services and the second (DataObject) element ensures the data ac-
cess services.

Distributed Protocol Metamodel. We define a distributed protocol by a set of
objects called ProtocolObject (Fig.6.). A ProtocolObject is an object that can

Fig. 5. Generic structure of a medium at implementation level

230 E. Kaboré and A. Beugnard

execute the behaviour of a distributed protocol. Each ProtocolObject is imple-
mented by a specific algorithm (ProtocolObjectAlgorithm). The main goal of the
distributed protocol metamodel involves defining a common interface for all the
distributed protocols that will be used in the context of mediums. Such inter-
faces are proposed in [13,11,9]. The IProtocolObjectServices interface exported
by the distributed protocol definition metamodel is similar to the interface de-
fined in [13]. This interface defines services for three main distributed applica-
tion abstractions: DHT (Distributed Hash Tables), DOLR (Decentralized Object
Location and Routing) and CAST (group anycast/multicast). The IProtocolOb-
jectServices interface offers the following services: route (to route a message),
forward (to forward a message), deliver (to deliver a message), join (to join the
distributed application) and leave (to leave the distributed protocol).

Fig. 6. A view of the distributed protocol specification metamodel

A definition of a distributed protocol model which conforms to the distributed
protocol metamodel involves:

1. The description of each ProtocolObject and at least one of its implementation
algorithms

2. The implementation of each service offered by the IProtocolObjectServices.

We illustrate the definition of a Chord protocol model in [14].

Model Transformation

Principle. The entry point of the transformation is a well defined medium de-
ployment abstract model (Fig.1. and Fig.3.) in this paper. In the full design
process of the medium, we perform a first transformation in order to transform
this model into an abstract implementation model in which all the UML associ-
ations between the medium class and the medium data classes are replaced by
the appropriate abstract types specified by the designer [15]. In the case of the
reservation medium for example, the available reservation identifiers (available
property in Fig.3.) can be represented by a list. Since we do not discuss ab-
stract types choice in this paper, this transformation will not be described in
this section. After the introduction of abstract types, we perform five successive

Implementing a Data Distribution Variant with a Metamodel 231

transformations in order to introduce data distribution topologies, distributed
protocols and distributed protocol algorithms into the abstract implementation
model of the medium. These transformations leads to a generic implementation
model implementing the actual data distribution variant. The designer completes
this generic implementation model by defining each offered service’s actual imple-
mentation algorithm to produce the final implementation model of the medium.
The following example describes a data distribution variant that will be used to
illustrate transformations in the remainder of this section.

An Example of a Data Distribution Variant. We will use the reservation medium
to illustrate transformations in this section. We suppose that the available reser-
vation identifiers (available property) are represented by a list. The goal is to
distribute this list between managers associated with agencies (ReserverMan-
ager) using the Chord protocol. The manager associated with the airline com-
pany (SourceManager) can only access the list. The Chord protocol will be
implemented by the MIT algorithm. These information are defined in a medium
decision model in the full implementation process in order to allow the automatic
execution of transformations [15].

T1. Introducing each Data Distribution Topology into the Abstract Implementa-
tion Model of the Medium. The input model of this step is the medium abstract
implementation model obtained after the introduction of abstract types. We
aim at introducing each data distribution topology into this model. We define a
transformation based on the medium deployment and implementation metamod-
els and the distributed data metamodel for this purpose. This transformation
leads to an abstract implementation model of the medium in which : a DataMan-
ager is associated with each manager participating in each data distribution and
a DataObject is associated with each manager accessing each distributed data.
Here is an informal summary of its main operations.

Preconditions:

1.Verify if each distribution node is defined in the medium model.

Actions:

For each data managed by the medium class:

1.Create and associate a generic DataManager object with each manager

participating to data distribution.

2.Create and associate a generic DataAccess object with each manager

using the data

Postcondition:

Verify if a DataManage and/or a DataObject is associated with each

manager according to the implementation variant.

As an illustration, in the example of the reservation medium, the transforma-
tion associates a ListDataManager to ReserverManager and a ListObject with
both SourceManager and ReserverManager (Fig.7.).

T2. Introducing Distributed Protocol in the Abstract Implementation Model of
the Medium In this step we define another transformation based on the same

232 E. Kaboré and A. Beugnard

Fig. 7. A view of the reservation medium after T1, T2 and T3

metamodels as T1 to introduce the distributed protocol that will be used to
ensure each data distribution strategy in the abstract implementation model
generated by T1. Its operations can be summarized as follows:

Preconditions:

Verify if the model of each distributed protocol conforms to

the distributed protocol metamodel

Actions:

1. Create and associate a generic ProtocolObject with each DataManager

according to the distribution variant.

Postcondition:

Verify if a generic ProtocolObject is associated with each DataManager

according to the distribution variant.

T3. Introducing Distributed Protocol Algorithms into the Abstract Implementa-
tion Model of the Medium This transformation perform the following operations
in order to introduce the implementation algorithm of each distributed protocol
object into the model generated by T2 as illustrated in Fig 7.

Preconditions:

Verify if each distributed ProtocolObject implementation algorithm is

well defined according to the distributed protocol metamodel.

Actions:

Create and associate a generic ProtocolObjectAlgorithm with

each protocol object according to the distribution variant.

Postcondition:

Verify if a generic ProtocolObjectAlgorithm is associated

with each ProtocolObject according to the distribution variant.

Implementing a Data Distribution Variant with a Metamodel 233

T4. Generating Abstract Methods Implementation Algorithms in the Abstract
Implementation Model of the Medium In this step, we define a transformation
to generate a default algorithm in order to implement each abstract method
contained in the abstract implementation model produced by T3. Here is an
example of a piece of code generated by this transformation in order to implement
the add primitive of the list for the reservation medium example.

class ListObject inherits IListServices

{ ... method get (index : Integer): Object from IListServices is do

if (self.dataProxy != void) then

then result := self.dataProxy.get(id) end

end end ... }

class ListDataProxy inherits IListServices

{ ... method get (index : Integer): Object from IListServices is do

var dataManager : ListDataManager init getListDataManager()

if (dataManager != void) then

then result := dataManager.get(id) end

end end ...}

T5. Configuring the Medium The previous step leads to an abstract implemen-
tation model of the medium in which all the generic elements needed to provide
each data distribution and access service are well defined. In this step, we define
a last transformation based on the same metamodels as the previous transforma-
tion in order to instantiate and associate the appropriate value with each generic
element. Four generic operations called managerConnection, managerDiscon-
nection, initialization and termination are defined in [7] in order to associate
a specific behaviour with a manager during its connection, disconnection, ini-
tialization and termination. The last transformation redefines these operations
in order to reach its goal. Here is an informal summary of the main operations
performed by the last transformation as an example of generated code for the
reservation medium.

Precondition:

Verify if all the abstract methods are implemented in the input model.

Actions:

1.Redefine the managerConnection, managerDisconnection, initialization

and termination operations in each Manager class.

2.For each distributed data:

2.1.Generate instructions in the managerConnection operations to

instantiate the appropriate protocol objects and protocol object

algorithms according to the design choice

2.2.Set the data manager and the data object values

2.3.Generate instructions in the managerDisconnection operations to

disconnect protocol objects

2.4.Generate instructions in the initialization operations to

initialize protocol objects

2.5.Generate instructions in the termination operations to terminate

protocol objects.

Postcondition:

234 E. Kaboré and A. Beugnard

Verify if the output is a good medium implementation specification

model according to the medium decision model and the medium

implementation specification metamodel

class ReserverManager inherits IReserverMediumServices

{...operation managerConnection() is do

available := ListObject.new

available.dataProxy := ListDataProxy.new

availableProtocolObject := ChordProtocolObject.new

availableProtocolObject.protocolObjectAlgorithm := MITAlgorithm.new

availableDataManager := ListDataManager.new

availableDataManager.protocolObject := availableProtocolObject

availableDataManager.listDefaultAlgorithm :=

ListDefaultAlgorithm.new // other instructions end }

Transformation Definition Platform. Transformations are implemented, tested
and executed on the Kermeta [16] platform. Each metamodel is implemented
by two Kermeta files. The first file implements all the structural aspects of the
metamodel. The second file implements all the properties of the metamodel. It is
then possible to check if a specific model is conform to the metamodel in which it
is defined. Each transformation is implemented by three Kermeta files. The first
file implements the preconditions, the second file implements the operations and
last file implements the postconditions of the transformation. A full definition
of metamodels and transformations in Kermeta is available in [12].

4 Related Works

Most methodologies are informally described. They suggest a process which, in
most formalized cases, rely on contracts [17] or mathematical refinements like
the B-method [18]. B defines a language and a refinement methodology. It is
an algebraic specification language that is supported by tools that help refine
specification safely. Each step of the process generates the proof requirement
that the developer has to demonstrate, either manually or automatically. Some
critical systems have been developed in B (in 1998 the control system of line 14
of the Parisian subway was fully developed and proved in B). Our approach is
more empirical and uses the so-called “semi-formal” approach. It may be easier
to learn and may tackle different kinds of design problems such as distribution.
We do not try to prove design steps, but just to automatize them and give
enough confidence in the transformations thanks to pre and post-conditions.

In a recent paper, H. Sneed [19] criticizes the model driven approach. He
argues that model-driven tools magnify the mistakes made in the problem defi-
nition; create an additional semantic level to be maintained; distort the image of
what the program is really like; complicate the maintenance process by creating
redundant descriptions which have to be maintained in parallel; are designed for
top-down development that creates well-known maintenance problems. These
drawbacks are mainly associated with tools. All these criticisms have already

Implementing a Data Distribution Variant with a Metamodel 235

been raised when assembler was replaced by high level programming languages.
We agree that tools are not mature. Our experiment shows that transformations
may help make explicit the process and simplify the maintenance, if models are
well defined enough.

Other experiments [20] tend to prove that model composition (hence a
bottom-up approach) is possible. This compositional approach resembles As-
pect Oriented Modelling [21]. This approach recommends separating concerns
and offers an operation of weaving that composes/weaves each concern with the
functional specification. Our approach differs since the “weaving” operation we
use is a transformation that is adapted to the kind of concern composed. In-
stead of using a universal weaving operation we propose a more flexible (but
less re-usable) approach in which a balance may be found between the meta-
model definition of the concern and its composition operation implemented as a
transformation.

Model transformations are widely used in UML models. Most of them cover
a small part of the development life cycle. Some transformations are dedicated
to code generation. They usually produce the skeleton (structural part) of the
source code that has to be completed manually. Another current use is in ap-
plying design patterns [22]. Once again, the structural part is rather well imple-
mented1, but the collaboration part is still research in progress.

5 Conclusion

This paper shows how model transformations can be used to describe the imple-
mentation process of data distribution issues in a distributed software compo-
nent. To do this we have defined metamodels that capture the required concepts
of data distribution. We have also realized a sequence of model transformations
that weave a variant of the data distribution design choice into the model of the
distributed component.

The transformations describe the process of introducing actual design alterna-
tive models in the specification of the component. The approach makes explicit
the data distribution implementation process. We argue that it is of great inter-
est in the sense that it facilitates traceability (the sequence of transformations),
reuse (applicability of transformations to many different models) and the evolu-
tion of the full process (adding more variant models).

As an illustration, we have applied our approach to implementing data distri-
bution in the context of mediums. We have described a set of transformations
and metamodels that can be used to introduce distributed protocols.

But the concern of data distribution is only one step in a larger design process.
We have described an approach based on the definition of a sequence of design
concerns. As an example we have selected the choice of an abstract type for the

1 Pattern purists would say that patterns are not dedicated to be automatically ap-
plied. In the absolute, we agree, but why not consider applying patterns in well
defined contexts?

236 E. Kaboré and A. Beugnard

collection of data, the choice of distribution strategies (described in this paper)
and the choice of data representation format.

Transformations are implemented, tested and executed with the Kermeta plat-
form. The implementation of the full design process relies on 6 metamodels and
5 main transformations. Each metamodel is implemented by two Kermeta files.
The first file implements all the structural aspects of the metamodel. The second
file implements all the properties of the metamodel. It is then possible to check
if a specific model is conformed to the metamodel in which it is defined. Each
transformation is implemented by three Kermeta files. The first file implements
the preconditions, the second the operations and the last file the transformation
postconditions. We also provide a library containing some abstract types (list,
set, bag, etc.), distributed protocols (chord, pastry, etc.) and data representation
format models (hashtable, array, matrix, etc.).

Transformations can be used to implement any abstract type, distributed pro-
tocol and data representation format model which conforms to our metamodels
in any well defined medium initial specification model. As an illustration, we have
used transformations to automatically derive various centralized and distributed
implementation variants of the reservation medium presented in this paper and
two other mediums: a voting medium and a message broadcast medium.

The actual generated implementation models of mediums are not fully ex-
ecutable in the sense that they do not provide a full executable code of dis-
tributed protocols. They just call protocol APIs to ensure that all distributed
feature are well implemented. Thus, in the short term, our main perspective is
to build middleware in order to allow the execution of the generated models in
conjunction with existing executable distributed protocol frameworks such as
MACEDON. We also aim to define other design alternatives metamodels and
models to enrich our library. After that, we aim to extend transformations to de-
fine auto-adaptable mediums that embed many variants and that could change
their internal deployed structures according to environment evolutions.

References

1. Connor, M.: Sadt - structured analysis and design technique. Technical Report
9595-7, Softech (May 1980)

2. Jackson, M.: System Development. Prentice-Hall, Englewood Cliffs (1983)
3. Cariou, E., Beugnard, A.: The specification of UML collaboration as interaction

component. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS,
vol. 2460, pp. 352–367. Springer, Heidelberg (2002)

4. Matougui, S., Beugnard, A.: Two ways of implementing software connections
among distributed components. In: International Symposium on Distributed Ob-
jects and Applications, Agia Napa, Cyprus (October 31 - November 2, 2005)

5. Cariou, E., Beugnard, A., Jézéquel, J.M.: An archictecture and a process for im-
plementing distributed collaborations. In: The 6th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2002), Ecole Polytechnique
Fédérale de Lausanne (EPFL), Switzerland (September 17 - 20, 2002)

Implementing a Data Distribution Variant with a Metamodel 237

6. Kaboré, E., Beugnard, A.: Conception de composants répartis par transformations
de modèle. In: Journées de l’Ingénierie Dirigée par les Modèles, Toulouse, France,
pp. 117–131 (March 29–30, 2007)

7. Cariou, E.: Contribution à un processus de réification d’abstraction de communi-
cation. Thèse de doctorat, Université de Rennes 1 (June 2003)

8. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: ACM SIGCOMM
Conference, San Diego (2001)

9. Rowstron, A., Drusche, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001.
LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

10. Massachusetts Institute of Technology: lsd (2004),
http://www.pdos.lcs.mit.edu/chord/

11. Rodriguez, A., Killian, C., Bhat, S., Kostic, D., Vahdat, A.: Macedon: Method-
ology for automatically creating, evaluating, and designing overlay networks. In:
USENIX/ACM Symposium on Networked Systems Design and Implementation
(NSDI 2004) (2004)

12. Kaboré, E.: Metamodel definitions (2008),
http://stockage.univ-brest.fr/∼kabore/

13. Dabek, F., Zhao, B., Drushcel, P., Kubiatowicz, J., Stoica, I.: Towards a common
api for structured peer-to-peer overlays. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS
2003. LNCS, vol. 2735, Springer, Heidelberg (2003)

14. Kaboré, E., Beugnard, A.: On the benefits of using model transformations to
describe components design process. In: Twelfth International Workshop on
Component-Oriented Programming (WCOP 2007), at ECOOP 2007, Berlin, Ger-
many (July 2007)

15. Kaboré, E., Beugnard, A.: Automatisation d’un processus de conception par trans-
formations de modèles. L’Objet 13(4), 105 (2007)

16. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-
oriented meta-languages. In: Briand, S.K.L. (ed.) MoDELS 2005. LNCS, vol. 3713,
pp. 264–278. Springer, Heidelberg (2005)

17. D’Souza, D., Wills, A.C.: Objects, Components and Framework with UML: The
Catalysis Approach. Addison-Wesley, Reading (1998)

18. Abrial, J.R.: The B-Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

19. Sneed, H.M.: The drawbacks of model-driven software evolution. In: Workshop
on Model-Driven Software Evolution, IEEE - CSMR 2007 11th European Confer-
ence on Software Maintenance and Reengineering ”Software Evolution in Complex
Software Intensive Systems”, Amsterdam, the Netherlands, March 20-23 (2007)

20. Muller, A., Caron, O., Carré, B., Vanwormhoudt, G.: On some properties of
parametrized model application. In: Hartman, A., Kreische, D. (eds.) ECMDA-
FA 2005. LNCS, vol. 3748, pp. 130–140. Springer, Heidelberg (2005)

21. Mens, K., Lopes, C., Tekinerdogan, B., Kiczales, G.: Aspect-oriented program-
ming. In: Bosch, J., Mitchell, S. (eds.) ECOOP 1997 Workshops. LNCS, vol. 1357,
Springer, Heidelberg (1998)

22. Sunyé, G., Guennec, A.L., Jézéquel, J.-M.: Design pattern application in UML. In:
Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 44–62. Springer, Heidelberg
(2000)

http://www.pdos.lcs.mit.edu/chord/
http://stockage.univ-brest.fr/~kabore/

Facilitating Gossip Programming with the

GossipKit Framework

Shen Lin, François Täıani, and Gordon S. Blair

Computing Department
Lancaster University, UK

{s.lin6,f.taiani,gordon}@comp.lancs.ac.uk

Abstract. Gossip protocols have been successfully applied in the last
few years to address a wide range of functionalities. So far, however, very
few software frameworks have been proposed to ease the development and
deployment of these gossip protocols. To address this issue, this paper
presents GossipKit, an event-driven framework that provides a generic
and extensible architecture for the development of (re)configurable
gossip-oriented middleware. GossipKit is based on a generic interaction
model for gossip protocols and relies on a fine-grained event mechanism
to facilitate configuration and reconfiguration, and promote code reuse.

Keywords: Gossip protocol, component framework, middleware, flexi-
bility, event-driven architecture.

1 Introduction and Problem Statement

Gossip-based algorithms have recently become extremely popular. The under-
lying concept of these algorithms is that individual nodes repeatedly exchange
data with some randomly selected neighbours, causing information to eventu-
ally spread through the system in a “rumour-like” fashion. Gossip-based proto-
cols offer three key advantages over more traditional systems: 1) they provide
a scalable approach to communication in very large systems; 2) thanks to the
randomised and periodic exchange of information, they offer self-healing capac-
ities and robustness to failures; and 3) since gossip peers are selected at random
and each node communicates with a limited number of peers, they offer natural
load-balancing abilities. Because of these benefits, gossip-based protocols have
been applied to a wide range of problems such as peer sampling [9,17], ad-hoc
routing [14], reliable multicast[1,2], database replication [10], failure detection
[11], and data aggregation [12].

In spite of this success, however, very few attempts have been made at develop-
ing gossip-based middleware architectures. T-Man [5] and Gossiping Framework
[6] proposed by Kermarrec and Steen [6] are two of the early gossip-dedicated
frameworks that have been proposed in this area. They both rely on a common
periodic gossip pattern to support a variety of gossip protocols. Although these
frameworks can help develop gossip-based systems to a significant extent, we
contend that they only partially address the issues faced by the developers of

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 238–252, 2008.
c© IFIP International Federation for Information Processing 2008

Facilitating Gossip Programming with the GossipKit Framework 239

gossip-based applications. First, the common periodic gossip pattern they rely
on only captures the features of proactive gossip protocols but does not support
reactive gossip algorithms. Second, these frameworks tend to be monolithic, thus
precluding a flexible and easily extensible architecture. Finally, these frameworks
are not designed to support runtime reconfiguration.

This paper introduces GossipKit, a fine-grained event-driven framework we
have developed to ease the development of (re)configurable gossip-based sys-
tems that operate in heterogeneous networks such as IP-based networks and mo-
bile ad-hoc networks. The goal of GossipKit is to provide a middleware toolkit
that helps programmers and system designers develop, deploy, and maintain
distributed gossip-oriented applications. GossipKit has a component-based ar-
chitecture that promotes code reuse and facilitates the development of new pro-
tocols. By enforcing the same structure across multiple and possibly co-existing
protocols, GossipKit simplifies the deployment and configuration of multiple pro-
tocol instances. Finally, at runtime, GossipKit allows multiple protocol instances
to be dynamically loaded, operate concurrently, and collaborate with each other
in order to achieve more sophisticated operations.

The contributions of this paper are threefold. First, we identify a generic
and modular interaction pattern that most gossip protocols follow. Second, we
propose an event-driven architecture based on this pattern that can be easily
extended to cover a wider range of gossip protocols. Third, we evaluate how our
event-driven architecture provides a fine-grained mechanism to compose gossip
protocols within the GossipKit framework.

The remainder of the paper is organised as follows. Section 2 discusses related
work. Section 3 presents a study of existing gossip protocols and explains how this
study informed the key design choices of GossipKit. Section 4 gives an overview of
GossipKit’s architecture. Section 5 describes our current implementation, while
an evaluation is provided in Section 6. Finally, Section 7 concludes the paper
and points out future work.

2 Related Work

Two categories of communication frameworks have been proposed to support
gossip protocols: Gossip Frameworks, which directly support gossip-based sys-
tems, and Event-driven communication systems, which tend to be more generic
and more flexible. In this section we analyse the strengths and weaknesses of
both of them from the viewpoint of gossip protocol development.

Gossip frameworks are specifically designed to support gossip protocols. Typ-
ical examples of such frameworks are T-Man [5] and Gossiping Framework [6]
proposed by Kermarrec and Steen [6]. These two frameworks assume that most
gossip protocols adopt a common proactive gossip pattern. In this gossip pat-
tern, a peer P maintains two threads. One is an active thread, which periodically
pushes the local state SP to a randomly selected peer Q or pulls for Q’s local
state SQ. The other is passive, which listens to push or pull messages from other

240 S. Lin, F. Täıani, and G.S. Blair

peers. If the received message is pull, P replies with SP ; if the received message
is push, P updates SP with the state in the message.

To develop a new gossip protocol within this common proactive gossip pattern,
one only needs to define a state S, a method of peer selection, an interaction
style (i.e. pull, push or pull-push), and a state update method. This inherently
supports a large range of proactive gossip protocols such as peer sampling service,
data aggregation, and topologic maintenance, which have all been implemented
in such gossip frameworks.

However, the monolithic design of these frameworks makes them inadapt-
able to protocols that use a reactive gossip pattern (e.g. SCAMP [9]) or those
implementing sophisticated optimisations such as feedback based dissemination
decision [13] and premature gossip death prevention [14]. Furthermore, these
frameworks neither support reconfiguration nor concurrent operation of multi-
ple gossip protocols at runtime.

Event-driven communication systems aim to provide a flexible composition
model based on event-driven execution. They are developed to support general-
purpose communication and can be used for gossip protocols. Examples of such
communication systems are Ensemble [3], Cactus [4] and their predecessors Isis
[7] and Coyote [8]. In these environments, a configurable service (e.g. a Con-
figurable Transport Protocol) is viewed as a composition of several functional
properties (e.g. reliability, flow control, and ordering). Each functional property
is then implemented as a micro-protocol that consists of a collection of event
handlers. Multiple event handlers may be bound to a particular event and when
this event occurs, all bounded event handlers are executed.

Event-driven communication systems offer a number of benefits for devel-
oping gossip protocols. First, individual micro-protocols can be reused to con-
struct families of related gossip protocols (implemented as services) for different
applications instead of implementing each new protocol from scratch. Second,
reconfigurability can be achieved by dynamically loading micro-protocols and re-
binding event handlers to appropriate events. Finally, the use of event handlers
present a fine-grained decomposition of protocols.

However, event-driven frameworks are known to be notoriously difficult to
program and configure as argued in [16]. In large part, this is because these
frameworks do not by themselves include any domain-specific features (e.g. in-
teraction patterns and common structure) for individual protocol types.

In order to address the above shortcomings, GossipKit adopts a hybrid ap-
proach that combines domain-specific abstraction and the strengths of event-
driven architecture. The remaining sections of this paper present its design and
prototype implementation.

3 GossipKit’s Key Design Choices

GossipKit is based on three key design choices: (i) application-dependent inter-
faces; (ii) a common-interaction pattern, and (iii) an event-driven architecture.
These choices result from a detailed analysis of a number of existing gossip-based

Facilitating Gossip Programming with the GossipKit Framework 241

protocols. In the following, we discuss in turn each of our choices, and explain
how they derive from this analysis.

3.1 Application-Dependent Interfaces

Gossip-based solutions have been proposed for a wide range of problems, and for
each specific problem, external modules are expected to interact with the gossip
protocol in very specific ways. For instance, a gossip-based routing protocol
has to provide a way for external applications to trigger a route request to be
gossipped, whilst a peer sampling service must instead expose the set of collected
peers. There is no elegant way to map those fundamentally different services onto
a unique common generic interface. Instead we have identified a set of generic but
domain-specific interfaces that can each support a category of gossip protocols
in a particular application domain (e.g. ad-hoc routing, or peer-sampling). This
approach allows us to uncouple the varied semantics of gossip-based services
from the unified implementation framework we have developed. We will revisit
this topic in Section 4.1, where we will describe in more detail the mapping
between these domain-specific interfaces and our underlying framework.

3.2 Common Interaction Pattern

Although different types of gossip protocols provide divergent interfaces to exter-
nal applications, we have found that, internally, they all follow the same interac-
tion pattern. This common interaction pattern can be captured using a modular
approach and combines the proactive gossip pattern that has been identified in
existing gossip frameworks [5,6], with the reactive gossip patterns observed on
gossip protocols such as [9] and [14]. This common interaction model is shown
in Fig. 1. In this figure, the modules involved in the interaction are presented as
boxes, and interactions between modules as arrowed lines. The direction of the
arrows indicates which module initiates the interaction, and the labels show in
which sequence these interactions take place.

Initially, a gossip dissemination can either be raised periodically (e.g. a peri-
odic pull or push of gossip message), or upon a receipt of an external request

Fig. 1. Common Interaction Model Fig. 2. Various Gossip Decision mod-
ules composed by micro-modules

242 S. Lin, F. Täıani, and G.S. Blair

(e.g. an ad-hoc routing protocol requesting a reactive gossip protocol such as
[14] and [21] to gossip a route request). These two interactions are represented
as (Pa) and (1a) in Fig. 1, respectively.

The second phase prepares the gossip action. Some gossip protocols may use
various policies to decide whether to gossip at the current state (2a). For instance,
a reactive gossip protocol may decide not to gossip the same message twice or
forward the message with a given probability [9]. If a decision is made to forward
the gossip message, the protocol instance will then select the peers it wishes to
gossip with from its state (2b). Different policies exist for selecting peers. For
instance, a subset of peers can be selected from the local state randomly or based
on their lifetime [17]. Note that peer selection may be optional in our model:
for instance the nodes of a wireless single-hop network always reach all their
neighbours with a single radio broadcast, [20], gossip protocols operating in these
environments therefore usually achieve gossiping behaviour through randomised
gossip decisions. In addition to gossip decision and peer selection, many gossip
protocols will need to decide which content is to be gossiped (2c). In particular,
a proactive gossip protocol typically requires to retrieve the gossip content from
its local state (e.g. a temperature reading) if it needs to send periodically its
state (push-style gossip) or reply to a request of its state (pull-style gossip).

The third phase is gossip dissemination (3). It utilises the underlying net-
work to send gossip messages to either the selected (e.g. in wired networks) or
neighbouring (e.g. in MANETs) peers.

On receipt of a gossip message from the network, a gossip protocol may react
in three different ways, depending on the type of the received message: i) it might
forward the message to peers that it knows (4a), thus repeating phase 2 (2a, 2b
and 2c); ii) it might respond with its own state (4b), and again loop on phase 2);
and iii) it might extract the remote state contained in the message, either merg-
ing [17] or comparing [2] the remote state with its own (4c). Besides this reactive
behaviour, a gossip protocol may also update its own state periodically (Pb). For
instance: a peer sampling protocol [17] may select peers by periodically their ob-
served lifetime. Finally, a gossip protocol might invoke three different interactions
during the state update process: 1) it might need to decide whether to merge the
remote state with its local one (5a) based on certain probabilistic policies [9]; 2)
it might compress the merged state (5b) to fit a predefined limit on the state size
[2]; and 3) it might request for the missing information through the Gossip module
(5c) after comparing the content in the remote state with its local one [1,2].

Note that this overall interaction model can be invoked recursively — each
module presented in Fig. 1 can itself be implemented as a gossip protocol that
follows the interaction model. For instance, the Peer Selection module can itself
be a gossip-based peer sampling service protocol.

In practice, the modules in Fig. 1 are rather coarse-grained, and may vary
widely between gossip protocols, making them hard to reuse. To maximise reuse,
our framework therefore allows each module to be composed from finer-grained
micro-modules, as shown on Fig. 2. More precisely, we have noticed that five
modules (Gossip, Peer Selection, Gossip Decision, State Compression, and State)

Facilitating Gossip Programming with the GossipKit Framework 243

can often be decomposed into finer-grained and reusable entities we have termed
micro-modules. These micro-modules each implement a distinct algorithm, and
can be combined to create more sophisticated behaviours. Fig. 2 shows for in-
stance three gossip-decision policies used in a gossip-based ad-hoc routing pro-
tocol (Gossip1(p), Gossip2(p, k), and Gossip3(p, k, p1, n)) [14].

Gossip1, Gossip2, and Gossip3 differ by how they decide whether to forward
the received routing request message (i.e. they use different Gossip Decision
modules): Gossip1 forwards the message with probability p; Gossip2 is the same
as Gossip1 except that it forwards the message with probability 1 in the fist k
hops; and Gossip3 is the same as Gossip2 except that it forwards message with
probability p1 > p if it has less than n neighbouring peers.

Rather than using separate implementations, these three different gossip deci-
sion strategies can be implemented by combining the three micro-modules shown
on Fig. 2. Gossip1 can directly use micro-module A; Gossip2’s Gossip Decision
module can be realised by combining with a Boolean OR the return values of
Micro-modules A and B ; and Gossip3 can similarly be composed from micro-
module A, B, and C. These different compositions are described in an XML
configuration file that we will present in Section 6.1.

3.3 Event-Driven Architecture

To support the common interaction pattern we have just presented, we argue that
any generic architecture should satisfy the following two criteria: First, it should
facilitate the implementation of the various modules we have just described by
making micro-modules easy to implement and configure. Second, Gossip proto-
cols exist that we have not considered, and new ones will appear in the future,
hence it requires extra modules and interactions beyond those we have identified,
making extensibility a key requirement.

Both requirements can be fulfilled using an event-driven architecture. Tra-
ditional event-driven architectures such as Ensemble and Cactus allow flexi-
ble protocol configuration through bindings between event handlers and events.
In such event-driven frameworks, our micro-modules (e.g. the Gossip Decision
micro-modules in Fig. 2) can be viewed as event handlers that are bound to
certain events. On the basis of these traditional event-driven architectures, Gos-
sipKit can be further improved to capture micro-module composition (e.g. the
ones mentioned in Section 3.2) using extended event-bindings. For instance, to
compose a ‘Gossip Decision’ module in GossipKit, several micro-modules can be
bound to events raised by the ‘Gossip’ module (Fig. 1). The ‘Gossip’ module can
then combine the values returned by each micro-module with a Boolean OR as
part of the binding, and decide whether to forward the message.

Similarly, extensibility is addressed by using events to minimise explicit cou-
pling between modules as argued in [8]. This allows our framework to be easily
extended by plugging in new micro-modules (i.e. event handlers) and reconfig-
uring event bindings to support new interaction patterns.

244 S. Lin, F. Täıani, and G.S. Blair

4 GossipKit’s Architectural Overview

The three design choices we presented in Section 3 have resulted in an architec-
ture consisting of five components, as shown in Fig. 3. In the figure, an inter-
action between two components is represented as a pair of connected interface
and receptacle. The API components implement the domain-specific interfaces
described in Section 3.1. The remaining components realise the common inter-
action pattern described in Section 3.2. The remainder of this section discusses
these components and their interactions in detail.

Fig. 3. GossipKit Architecture

4.1 API Components

API components uncouple the gossip protocols implemented by the framework
from external applications. Each type of API component provides a generic in-
terface to access a particular category of gossip protocols. API components also
act as a bridge between their method-based interface and the events used by the
framework. Fig. 4 for instance shows how the API component for the peer sam-
pling service provides an IGetPeers interface to retrieve peer information from
the local peer. When IGetPeers is invoked (operation 1 in Fig. 4), the API com-
ponent generates a GetPeers event to the event handler registry (operation 2).
The registry dispatches this event to the proper event handler (operation 3, see
Section 4.3 below), which then retrieves the peer sampling information stored
locally, and returns the information to the API component as the event handling
result (operation 4 and 5). Finally, the API component returns the resulting peer
sample to the external application through IGetPeers interface (operation 6).

4.2 Periodic Trigger Component

The periodic trigger component is only needed when the framework is used
to support proactive gossip protocols. This component periodically dispatches

Facilitating Gossip Programming with the GossipKit Framework 245

Fig. 4. Interaction of API Component with External Application

events to trigger specific event handlers that perform different styles of gossip-
ing, such as pull, push or pull-push. The event-dispatching period (the gossip
frequency) is set at deployment time, and can be reconfigured dynamically.

4.3 Event Handler Registry

The event handler registry acts as a broker between event handlers and event
producers (components that raise events). On the invocation of an event, the
event registry finds and executes the registered event handlers that are bound
to this particular event type. To this aim, the registry maintains a table that
records event handler IDs with the events they can handle. This table is pop-
ulated each time an event handler’s IHandleEvent interface is connected to the
registry using the handler’s meta-data. The event handler registry also provides
an IHandleEvent interface to event producers to trigger the events.

Interestingly, the event handlers themselves can use the IHandleEvent interface
to raise and delegate internal events to others handlers, thus providing a consis-
tent event-based environment and facilitating interoperability between different
gossip protocols.

Finally, the event handler registry can dynamically load composition functions
to compile and interpret descriptions of micro-module composition, such as the
ones mentioned in Section 3.2.

4.4 Event Handler Plugins

As mentioned in Section 3.3, our modules (i.e. Gossip, Peers Selection,
Gossip Decision, State Compression, and State in Fig. 1) can be further decom-
posed into finer-grained micro-modules. In our architecture, these micro-modules
are implemented through a collection of event handler plugins (Fig. 3). These
micro-modules are directly invoked by the event handler registry to handle events
generated by the rest of the framework (including other micro-modules) using the
extended bindings we’ve presented earlier. Micro-modules for the Gossip module
have also access to network component to send messages (see below).

4.5 Network Component

This component provides network level communication to other components, and
as such is responsible both for sending messages generated by the Gossip module

246 S. Lin, F. Täıani, and G.S. Blair

and for delivering message events received from the network to the event handler
registry. Through this component, our framework can operate on heterogeneous
transport layers such as UDP, TCP, or ad-hoc routing, or any virtual transport
layers such component-based virtual overlays [19].

5 Implementation

GossipKit’s prototype implementation1 is based on the Java version of OpenCom
[15], a lightweight, efficient and reflective component engine. Java’s portabil-
ity enables GossipKit to operate on various platforms, from desktop computers
through to PDA. We implemented the micro-modules and event handler plugins
shown in Fig. 3 as individual OpenCom components, while we realised events
with a plain Java class. This class contains: (i) a header string, which identifies
the event type used by the handler registry to find appropriate event handlers,
(ii) a body containing data to be processed by event handlers, (iii) a source ID
denoting the peer that generated the event, and (iv) a target ID that identifies
the target peer the event should be routed to.

Our periodic trigger component features a basic yet efficient task scheduler
that allows the coexistence of multiple gossip protocols working at different fre-
quencies. Our scheduler uses a single thread shared for protocols, and thus signif-
icantly reduces resource utilisation on constrained systems. We will revisit this
issue at Section 6.3 when we discuss the memory measurement of GossipKit.

6 Evaluation

We evaluated five key properties of GossipKit—(i) configurability, (ii) reusabil-
ity, (iii) memory usage, (iv) extensibility, and (v) reconfigurability—by imple-
menting three gossip protocols from two categories: the peer-sampling services
SCAMP and PSS [9,17], and the reliable multicast ‘Bimodal Multicast’ [2]. To
assess GossipKit’s ability to support concurrent execution of multiple protocol
instances, we also configured Bimodal Multicast to operate on SCAMP and PSS.

6.1 Configurability

In event-driven systems, manually configuring event bindings is often time-
consuming. To ease this, GossipKit uses an XML-based configuration format
(Fig. 5) that describes each protocol as a high-level component composition. This
format uses the common interaction pattern we have identified earlier (Fig. 1)
as a template that guides users through the selection process of interactions and
module instances required to form a gossip-based protocol/application.

1 Source code available at: www.lancs.ac.uk/postgrad/lins6/sub/GossipKitWeb/

GossipKit.html

file:www.lancs.ac.uk/postgrad/lins6/sub/GossipKitWeb/GossipKit.html
file:www.lancs.ac.uk/postgrad/lins6/sub/GossipKitWeb/GossipKit.html

Facilitating Gossip Programming with the GossipKit Framework 247

GossipKit’s XML configuration format abstracts away the details of our
event-driven architecture, and allows GossipKit to automatically map high-level
protocol configurations to appropriate event generators and event handlers.
GossipKit’s configuration format contains the following key entities: 1) coex-
isting protocol instances are described using <protocol> elements; 2) the micro-
modules that make up each gossip protocol are described in <micromodule>
elements, and can be parametrised individually using the <parameters> ele-
ment; and 3) a dedicated non-XML syntax is used to describe textually compo-
sitional or recursive modules: for instance the Peer Selection module for Bimodal
Multicast is described as protocol(PSS) in Fig. 5 to indicate that PSS is used re-
cursively to select peers; and the compositional GossipDecision module of Gossip3
in Fig. 2) would be described as micromodule(A OR B OR C).

From our experience, configuring a new protocol from existing elements takes
approximately 15 minutes. For illustration, the remainder of this subsection
shows how the PSS protocol can be configured to use push-style gossip and
life-time based peer selection from existing events and micro-modules.

Before discussing PSS, we must first explain the various event types that label
inter-module interactions in Fig. 6. As explained in Section 5, each event’s type
is encoded in a string-based header to help the event handler registry dispatch
the event to the correct handlers. For instance, a State module can handle Get
and Add events while a Gossip module can handle Gossip events. In addition to
this base type, a header string can carry extra information to indicate the type
of data either carried by the event, or that is to be retrieved from the state (i.e.
our events are similar to generics). For instance, Get<PeerID> will instruct the
State module to get a list of PeerIDs instead of the whole state. This mechanism
is recursive, which allows for cascading events, such as when a Gossip module
receives a Gossip<Add<PeerID>> event, and dynamically raises a Add<PeerID>
event to be sent over the network.

Fig. 5. XML Config Fig. 6. Use case study: configuring the PSS protocol

In Fig. 6, the State is configured as a set of PeerIDs with associated lifetime
counts. A local peer P joins the network by sending a Gossip<Add<PeerID>>
event to an existing network peer Q, and retrieves its local peer sample with a
Get<PeerID> event. On a join, GossipA is configured to forward the returned

248 S. Lin, F. Täıani, and G.S. Blair

content (i.e. in this case P ’s PeerID) to a given target (i.e. in this case Q) by
sending the event Add<PeerID> on the network. When it receives this event,
Q extracts P ’s PeerID from the event body and adds it to its state. The Peri-
odic Trigger module dispatches two events periodically: 1) The first event in-
crements the Count associated with each PeerID in State; while 2) the second
triggers GossipB to push the content of the local state to selected peers. GossipB
invokes the Ranking Based Peer Selection micro-module to select peers based on
their lifetime, and forward them its own state, obtained using Get<WholeState>.
GossipB then sends this information within a StateCompression event to the se-
lected peers. Each recipient then appends the received state to its own, before,
the Ranking Based State Compression micro-module compresses the size of the
resulting state by discarding the PeerIDs entries with the oldest lifetime.

6.2 Reusability

We evaluated the reusability of GossipKit using a quantitative approach sug-
gested in [18]. This approach measures the byte code size of the Java classes
that make up different configurations of components. To evaluate the reused de-
velopment effort, we initially considered to measure both the reused byte code
size and the cyclomatic complexity [22], but as shown in Fig. 7, the byte code
size and the cyclomatic complexity (measured using CyVis2) provide roughly
the same indication of development effort. In the following we therefore limit
ourselves to byte code measurements.

Fig. 7. Byte Code size and cyclomatic complexity provide the same measurements

In table(a) of Fig. 8, the columns under the protocol name SCAMP, PSS, and
Bimodal Multicast list the number of each component type used for configuring
these protocols. The highlighted rows show the components that were used more
than once during configuration. These results show that most components have
been frequently reused during the development of the three protocols. Further-
more, GossipKit does not only promote component reuse for developing gossip
protocols that belong to the same category (SCAMP and PSS belong to the peer
sampling category), but also for those belong to different categories (PSS and
Bimodal Multicast). Finally, we compared the total effort of developing these

2 http://cyvis.sourceforge.net/

http://cyvis.sourceforge.net/

Facilitating Gossip Programming with the GossipKit Framework 249

Fig. 8. Reusability and Memory Usage Measurements

three protocols in GossipKit (framework size) against the effort for developing
each individual protocol without the support of GossipKit (side-by-side size).
The result in table(a) of Fig. 8 shows that, overall, GossipKit helps save about
60% of development effort when implementing the three protocols.

6.3 Memory Usage

GossipKit aims to facilitate the development of a wide range of gossip protocols
across heterogenous networks and devices. To assess GossipKit’s suitability for
mobile devices with strict memory constraints, we measured the dynamic mem-
ory footprint of the components that make up the protocol configurations at
runtime, using the JProfiler3 tool. The results in table(b) of Fig. 8 indicate that
the configurations map well onto mobile devices, as minimum configurations
of protocols in GossipKit require less than 100Kbytes. In addition, JProfiler
shows the memory usage of the PeriodicGossip component that adopts a single
thread implementation remains 16 bytes regardless to the number of concur-
rent protocol instances running in GossipKit, validating our choice of avoiding
memory-intensive multi-threading mentioned in Section 5.

6.4 Extensibility

To assess GossipKit’s extensibility, we used a case study to evaluate the effort
required to add a new gossip-based protocol to the three existing ones. More
precisely we developed a gossip-based number averaging protocol [6] based on
the existing configuration for PSS. Fig. 9 shows that this new protocol can reuse
most of PSS’s modules and XML configuration file: One only needs to implement
two extra modules (with development effort of 3.7 Kbytes measured in byte

3 http://www.ej-techonologies.com

http://www.ej-techonologies.com

250 S. Lin, F. Täıani, and G.S. Blair

Fig. 9. Extending the PSS implementation into a number averaging protocol

code size) that are presented as shaded rectangles, to remove several redundant
interactions and to change several configurations that are presented as shaded
and rounded rectangles (the modifications on the configuration file only takes
about 1 minute). Furthermore, we consider that it is less frequent for users to
implement new components as the component collection expands because of
GossipKit’s support on code reuse. For instance, the newly implemented two
modules will remain available for other data aggregation protocols and will not
need to be re-implemented in the future.

6.5 Reconfigurability

GossipKit supports fine-grained reconfiguration to adapt to environment changes
— different protocol behaviours can be achieved by replacing a single component.
For instance, a peer sampling service with a life-time based peer selection can
be replaced by a probabilistic peer selection module, and a particular network
component can be replaced by different routing schemes. This form of compo-
nent replacement relies on the mechanisms directly provided by OpenCOM. A
discussion of these mechanisms is however out of the scope of this paper.

7 Conclusion and Future Work

This paper has presented GossipKit, an event-based gossip protocol framework
that aims to facilitate the development of configurable and reconfigurable mid-
dleware and supports multiple gossip protocols potentially operating in parallel
under different types of networks. We have presented a prototype implemented
using a reflective component model (OpenCom), and we have discussed some
of the benefits we have observed when implementing several gossip protocols
with our framework. Our evaluation indicates that GossipKit promotes code
reuse, simplifies configuration for deploying gossip protocol middleware, reduces
the overhead for runtime reconfiguration, and minimises the resource usage at
runtime to a certain level.

In the future, we plan to explore a broader range of gossip protocols in or-
der to identify more domain-specific features and to improve the genericity of

Facilitating Gossip Programming with the GossipKit Framework 251

the common interaction model. We are also currently developing a domain spe-
cific visual language based on the existing XML-based configuration to further
reduce the configuration effort and to guard users from potentially incorrect con-
figurations. Furthermore, we plan to utilise the self-organising features of gossip
protocols to improve GossipKit towards a self-adaptive framework so that it can
automatically reconfigure itself and adapt to changes in its environment.

Acknowledgement

This work has been partially supported by the ESF MiNEMA programme.

References

1. Eugster, P., Guerraoui, R., et al.: Lightweight Probabilistic Broadcast. In: IEEE
International Conference on Dependable Systems and Networks(DSN 2001) (2001)

2. Birman, K., Hayden, M., et al.: Bimodal multicast. TR99-1745, May 11 (1999)

3. Renesse, R., Birman, K., Hayden, M., et al.: Building Adaptive Systems Using
Ensemble. Cornell University Technical Report (1997)

4. Hiltunen, M., Schlichting, R.: The Cactus Approach to Building Configurable Mid-
dleware Services. In: Proceedings of the Workshop on Dependable System Middle-
ware and Group Communication (DSMGC 2000), Nuremberg, Germany (October
2000)

5. Jelasity, M., Babaoglu, O.: T-Man: Gossip-based overlay topology management.
In: EngineeringSelf-Organising Systems: 3rd International Workshop (2005)

6. Kermarrec, A., Steen, M.: Gossiping in Distributed Systems. In: Proc. of SIGOPS
Operating System Review (2007)

7. Birman, K., Abbadi, A., Dietrich, W., et al.: An Overview of the ISIS Project. In:
IEEE Distributed Processing Technical Committee Newsletter (January 1985)

8. Bhatti, N., Hiltunen, M., Schlichting, R., Chiu, W.: Coyote: A System for Con-
structing Fine-Grain Configurable Communication Services. ACM Transactions on
Computer Systems (November 1998)

9. Ganesh, A., Kermarrec, A.-M., Massoulie, L.: SCAMP: Peer-to-Peer Lightweight
Membership Service for Large-Scale Group Communication. In: Proc. of the 3rd
International workshop on Networked Group Communication (2001)

10. Agrawal, D., Abbadi, A.E., Steinke, R.: Epidemic algorithms in replicated
databases. In: Proc. 16th ACM Symp. on Principles of Database Systems (1997)

11. van Renesse, R., Minsky, Y., Hayden, M.: A gossip-style failure-detection service.
In: Proc. IFIP Intl. Conference on Distributed Systems Platform and Open Dis-
tributed Processing (1998)

12. Gupta, I., van Renesse, R., Birman, K.: Scalable fault-tolerant aggrgation in large
process groups. In: Proc. Conf. on Dependable Systems and Networks (2001)

13. Demers, A., Greene, D., Hauser, C., et al.: Epidemic algorithms for replicated
database maintenance. In: Proc. of the sixth annual ACM Symposium on Principles
of distributed computing (1987)

14. Haas, Z., Halpern, J., Li, L.: Gossip-based Ad-Hoc Routing. IEEE/ACM Transac-
tions on Networking (TON) (2006)

252 S. Lin, F. Täıani, and G.S. Blair

15. Clarke, M., Blair, G., Coulson, G., et al.: An efficient component model for the con-
struction of adaptive middleware. In: Proc. of IFIP/ACM International Conference
on Distributed Systems Platforms and Open Distributed Processing (2001)

16. Hiltunen, M., Taiani, F., Schlichting, R.: Reflections on Aspects and Configurable
Protocols. In: The 5th Int. Conf. on Aspect Oriented Software Development (2006)

17. Jelasity, M., Guerraoui, R., Kermarrec, A., et al.: The Peer Sampling Service:
Experimental Evaluation of Unstructured Gossip-Based Implementations. In: Proc.
of the 5th ACM/IFIP/USENIX international conference on Middleware (2004)

18. Flores-Cortes, C., Blair, G., Grace, P.: A Multi-protocol Framework for Ad-Hoc
Service Discovery. In: Proc. of the 4th International Workshop on on Middleware
for Pervasive and Ad-Hoc Computing, Australia (2006)

19. Grace, P., Coulson, G., Blair, G., et al.: GRIDKIT: Pluggable Overlay Networks
for Grid Computing. In: Proc.of International Symposium on Distributed Objects
and Applications(DOA), Larnaca, Cyprus (2004)

20. Friedman, R., Gavidia, D., Rodirgues, L., et al.: Gossiping on MANETs: the Beauty
and the Beast. ACM Operating Systems Review (2007)

21. Hou, X., Tipper, D.: Gossip-based sleep protocol (GSP) for energy efficient rout-
ing in wireless ad hoc networks. In: Proceedings of Wireless Communications and
Networking Conference (2004)

22. McCabe: A Complexity Measure. IEEE Transactions on SE (1976)

Cost-Efficient Deployment of Collaborating
Components

Máté J. Csorba, Poul E. Heegaard, and Peter Herrmann

Norwegian University of Science and Technology (NTNU),
Department of Telematics, N-7491 Trondheim, Norway

{Mate.Csorba,Poul.Heegaard,Peter.Herrmann}@item.ntnu.no

Abstract. We study the problem of efficient deployment of software components
in a service engineering context. Run-time manipulation, adaptation and compo-
sition of entities forming a distributed service is a multi-faceted problem chal-
lenged by a number of requirements. The methodology applied and presented
can be viewed as an intersection between systems development and novel net-
work management solutions. Application of heuristics, in particular artificial in-
telligence in the service development cycle allows for optimization and should
eventually grant the same benefits as those existing in distributed management
architectures such as increased dependability, better resource utilization, etc. The
aim is finding the optimal deployment mapping of components to physically
available resources, while satisfying all the non-functional requirements of the
system design. Accordingly, a new component deployment approach is intro-
duced utilizing distributed stochastic optimization.

1 Introduction

Today, computer applications tend to be highly distributed and dynamic. In addition,
they are executed on hardware systems that change their topology and performance dy-
namically. This calls for flexible methods to deploy the software components realizing
a networked application on the available hosts to achieve preferably high performance
and low cost levels.

By such a software component we mean an executable stand-alone package of soft-
ware that has a well-defined interface and can communicate with other components via
message exchange. Furthermore, we define a service as a collaboration of distributed
components running in a (possibly also highly distributed) hardware environment on
different hosts, using distinct network elements for interconnection. A specific service
can be observed from different views. We investigate the problem of efficient compo-
nent deployment from the view of the service creator who is in most cases the provider
of the service as well. We do so based on the starting point we use for our investigation,
i.e. we start from a service specification, from a model that is a product of the service
designer. Usually the parameters we are interested in are performance and cost effec-
tiveness, which are both substantial from the provider’s perspective if it comes to the
deployment of a new service.

The problem of cost-efficient component deployment is challenged by multiple di-
mensions of Quality of Service (QoS), or in other words, non-functional requirements

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 253–268, 2008.
c© IFIP International Federation for Information Processing 2008

254 M.J. Csorba, P.E. Heegaard, and P. Herrmann

that need to be taken into account. To name a few there might be a fluctuation in the
number of users of the service deployed who might also have arbitrary utility functions
for the service as well as different usage scenarios. Additionally, the QoS requirements
identified might change over time, the system designed might provide several services.
This complicated combination of factors forms the basis of the problem we aim to
solve. Namely, finding the optimal deployment mapping of components to physically
available resources, while satisfying all the non-functional requirements of the system
design.

The resulting deployment mapping has a large influence on the QoS that can and will
be provided by the system. The most basic example of improving QoS by choosing a
better deployment architecture is to consider only the latency of the service. The easiest
way to satisfy latency requirements is to identify and deploy the components that re-
quire the highest volume of interactions onto the same resource, or to choose resources
that are at least connected by links with sufficiently high capacity.

Several approaches have been followed to solve this problem, e.g. binary integer pro-
gramming [1] or graph cutting [2]. Usually, complexity becomes NP-hard using these
methods with more than 2-3 hosts. Others try to capture constraints and restrict the solu-
tion space [3]. However, due to the exact solution algorithms computational complexity
is still an issue. What is even more restrictive in these approaches is that they do not
attempt to work with more than one QoS dimension at a time, while our objective is to
deal with vectors of QoS properties in one run. Furthermore, we aim to be able to aid
the deployment of several different services at the same time using the same framework.

Approximative solutions are devised by Malek et al., such as greedy algorithms, ge-
netic programming for example in [4]. Malek et al. however approaches the deployment
problem from the user’s perspective by maximizing an overall utility function. On the
contrary, we aim to investigate the deployment problem from the service provider’s
perspective. Besides, autonomous replication management is targeted by Meling in a
framework based on group communication systems [5]. Widell et al. discuss an alterna-
tive solution based on a stochastic optimization method called the Cross Entropy (CE)
Method [6].

Generally, we require a method that is capable to adapt to changes in the environ-
ment in a highly efficient way. Also, as module allocation problems are proven to be
NP-complete (cf. [7]), except in some special cases, heuristics are needed for providing
an efficient solution. Accordingly, we chose a bio-inspired system, swarm intelligence
as a basis for our method to solve the deployment problem in a fully distributed man-
ner. As we omit any centralized database or building block and propose to use the
analogy of pheromones for storing information in a distributed way the logic presented
is robust and highly adaptive with respect to changing QoS provided by the service ex-
ecution platform. Eventually, our aim is to develop a method for run-time component
(re-)deployment support that allows execution of services within the allowed region of
external parameters defined by the service requirements.

The remainder of this paper is organized as follows. The next section will introduce
our system model and position our work. Sect. 3 briefly presents the Cross-Entropy Ant
System (CEAS) that is used throughout the paper as the basis of our heuristic optimiza-
tion method. Sect. 4 provides our solution to the target scenario and a summary of our

Cost-Efficient Deployment of Collaborating Components 255

algorithm. Sect. 5 comes with a more tangible example and compares our results to
previous solutions. In the last section we conclude and touch upon our future work.

2 Support for Deployment Mapping

Our deployment approach fits to the engineering method SPACE which is devoted to
the rapid and correct engineering of distributed services [8]. As depicted in Fig. 1(a), in
the process of developing a service, one creates first a purely functional service model.
This specification is collaboration-oriented, i.e., the overall service specification is not
composed from descriptions of the physical software components realizing the service
but from models of distributed sub-functionalities which — in interaction — fulfill the
complete service behavior. This specification style enables the development of service
models by reusing building blocks from domain specific model libraries to a much
higher degree than it would be possible when applying component-based descriptions
(e.g., [9]). As modelling language, we use UML collaborations and activities.

After performing correctness checks on the service model (see [10]), it is trans-
formed to a component-oriented design model by a model transformation tool [11]
which is specified by UML state machines. In the next step, code generators create ex-
ecutable Java code from the design model enabling a fully automated transformation
of collaboration-oriented service models to executable programs. This process is well
described in [12].

Service models

Design models

Design
synthesis

Code
generation

Execution

Implementation
Dynamic

deployment

Requirements
capturing

a a

a

(a) Development cycle

High-level
goals

Requirement
profiles

Network
profile

+

NF-Requirements

Refinement

Deployment
logic

Monitoring + execution

Deployment
mapping

Deployment

Capturing

Feedback

a a

a

(b) Deployment support

Fig. 1. Development with SPACE and the deployment support

For the efficient deployment of the implementation, we extend the development cy-
cle as shown in Fig. 1(b). The service models are amended by high-level non-functional
(NF) goals defining the non-functional requirements (NFR) of a service in a rather
abstract manner. In parallel with the transformation from the service to the design mod-
els, these NF goals are refined into requirement profiles specifying the non-functional
requirements of the service components. Moreover, a network profile is added, thus
required and provided properties are collected describing the system and its target envi-
ronment. Based on these inputs our deployment logic can be launched with the profiles
specifying the goals and the net-map specifying the search space.

For capturing QoS requirements that are relevant to our system, we follow the colla-
boration-oriented style and capture NFRs in design time. NFRs usually represent qual-
ities such as security, performance, availability, portability, etc. In fact, in our view the

256 M.J. Csorba, P.E. Heegaard, and P. Herrmann

Comp jComp i Collab

Comm.
cost = 15

Exec.
cost = 30

Exec.
cost = 20

aa

aa

aa

k

Fig. 2. Collaboration with NFRs

deployment logic should be able to handle any properties of the service, as long as we
can provide a cost function for the specific property. In that matter we will exploit the
advanced scalability of CEAS and the method of pheromone sharing.

In Fig. 2 a simple example of a collaboration between two components is depicted
enriched with NFRs for both the components and for the collaboration binding them.
This basic collection of requirements contains two types of cost values, an execution and
a communication cost. The execution cost is added to the local cost of a node that con-
tains the particular component after deployment. The communication cost is imposed
on the connection between the two components participating in the collaboration. This
simple example of collaboration-oriented specification and capturing of requirements
will be illustrated in the example in Sect. 5.

Existing component deployment strategies and solutions use various centralized
databases and decision logics. Relying on a fully centralized logic requires the bur-
den of keeping the central database constantly updated and at the same time introduces
a single point of failure in the system. Moreover, a performance bottleneck may arise at
the node storing the central database and accommodating the decision logic both com-
munication wise and storage wise.

In a distributed cooperative algorithm (semi-)autonomous agents cooperate to a-
chieve certain common goals. Since in a distributed environment autonomous agents
do not have an overview of the system as a whole, their decisions have to be based on
information that is available locally to the place where they reside. To enable cooper-
ation between agents, some sort of shared memory is required at each place an agent
can visit. In our deployment logic, the information is distributed across all the nodes
participating in the deployment. In this way, we achieve a completely robust, scalable
and fault tolerant mechanism. Furthermore, to achieve a complete solution, our aims
are twofold. First, the logic shall be able to obtain an initial deployment mapping based
on the service model. Second, once the service is running, the logic shall be capable of
monitoring online and execute the necessary changes to satisfy the requirements it is
launched with.

The objective is to find the optimal, or at least a satisfactory, mapping in reasonable
time between a number of component instances c, onto nodes n. A component, ci ∈ C
(C is the set of components available for (re-)deployment) can be a client process, or
a service process, while a node, n ∈ N (N is the set of nodes) can be a transit node,
e.g. a traditional IP router, a server node, which is capable of accommodating a service
component, a client node, which is an aggregation point for client components, or a
mixed node that can accommodate both client and service components.

The cost function F (M) of the mapping M : C → N should be minimized under
the constraints given by the mapping scopes Ri ⊆ N for each component instance i. Ri

Cost-Efficient Deployment of Collaborating Components 257

is determined by the intersection of access restrictions, service provider policies (e.g.
service level agreements of ISPs), provided and requested capabilities (soft costs) and
provided and requested capacity requirements (hard costs, e.g. bandwidth limitations).
Attached components, i.e. components restricted to a specific node will have an Ri set
consisting of a single node, thus reducing the search space.

Fig. 3. Component mapping example

An illustration of the model can be found in Fig. 3. Suppose we develop a service,
Servicek, which is implemented by three service components C = {c1, c2, c3} and the
service is expected to be accessed by two distinguishable set of clients. Besides the re-
quirement profiles, the service provider must provide the net-map for the decision logic
as well, specifying the available nodes and links. Thus, the set of nodes becomes N =
{n1, n2, . . . , n8}. Client nodes in this case are considered to be aggregation nodes, i.e.,
they represent a single point of access to the network for the clients of the service, with
a different meaning from the traditional notion of node. So, the designer can specify
where in the provided net-map the clients are located and can insert additional param-
eters describing the clients of the service, such as the expected amount of clients, the
expected service demand, etc. as NFRs. Constraints that will influence the optimal de-
ployment can be assigned to nodes and links. For links, constraints appear as the costs
of using the particular link for connection between two components that need to inter-
act. Constraints assigned to nodes, for instance, can represent memory sizes restricting
placement of component instances to a place. Besides, node properties can be interre-
lated, i.e., for example if a mixed type node (n6) accommodates a service component it
can influence the rest of the properties, e.g. lower the amount of allowed clients at the
node by modifying the memory constraint.

Next, we introduce the stochastic optimization background, which we use for pro-
viding solutions to the component deployment and redeployment problem.

3 Cross Entropy Ant System

The deployment problem in this paper is approached by use of a distributed, robust
and adaptive routing system called the Cross Entropy Ant System (CEAS) [13]. The

258 M.J. Csorba, P.E. Heegaard, and P. Herrmann

CEAS is an Ant Colony Optimization (ACO) system as introduced by Dorigo et al.
[14], which is a multi-agent system for solving a wide variety of combinatorial opti-
mization problems where the agents’ behavior are inspired by the foraging behaviour of
ants. Examples of successful application in communication system are load-balancing
(Schoonderwoerd et al. [15]), routing in wired networks by AntNet [16], and routing
in wireless networks by AntHocNet [17]. The key idea is to let many agents, denoted
ants, iteratively search for the best solution according to the problem constraints and
cost function defined. Each iteration consists of two phases; the forward ants search
for a solution, which resembles the ants searching for food, and the backward ants that
evaluate the solution and leave markings, denoted pheromones, that are in proportion
to the quality of the solution. These pheromones are distributed at different locations
in the search space and can be used by forward ants in their search for good solutions;
therefore, the best solution will be approached gradually. To avoid getting stuck in pre-
mature and sub-optimal solutions, some of the forward ants will explore the state space
freely ignoring the pheromone values.

The main difference between the ant based systems is the approach taken to evalu-
ate the solution and update the pheromones. For example, AntNet uses reinforcement
learning while CEAS uses the Cross Entropy (CE) method for stochastic optimization
introduced by Rubinstein [18]. The CE method is applied in the pheromone updating
process by gradually changing the probability matrix pr according to the cost of the
paths. The objective is to minimize the cross entropy between two consecutive samples
pr and pr−1. For a tutorial on the method, [19] is recommended.

The CEAS has demonstrated its applicability through a variety of studies of differ-
ent path management strategies, such as shared backup path protection (SBPP) [20],
p-cycles [21], resource search under QoS constraints [22], and adaptive paths with
stochastic routing [23]. Implementation issues and trade-offs, such as management
overhead imposed by additional traffic for management packets and recovery times
are dealt with using a mechanism called elitism [24] and self-tuned packet rate control
[25], [26]. Additional reduction in the overhead is accomplished by pheromone shar-
ing [27] where ants with overlapping requirements cooperate in finding solutions by
(partly) sharing information.

In this paper, the CEAS is applied to obtain the best deployment of a set of com-
ponents, C, onto a set of nodes, N. The nodes are physically connected by links used
by the ants to move from node to node in search for available capacities. A given de-
ployment at iteration r is a set Mr = {mn,r}n∈N, where mn,r ⊆ C is the set of
components at node n at iteration r. In CEAS applied for routing the path is defined
as a set of nodes from the source to the destination, while now we define the path as
the deployment set Mr. The cost of a deployment set is denoted F (Mr). Furthermore,
in the original CEAS we assign the pheromone values τij,r to interface i of node j at
iteration r, while now we assign τmn,r to the component set m deployed at node n at
iteration r. In Sect. 4 we describe the search and update algorithm in details.

In traditional CEAS applied for routing and network management, selection of the
next hop is based on the random proportional rule presented below. In our case how-
ever, the random proportional rule is applied for deployment mapping. Accordingly,
during the initial exploration phase, the ants randomly select the next set of components

Cost-Efficient Deployment of Collaborating Components 259

with uniform probability 1/E, where E is the number of components to be deployed,
i.e. the size of C, while in the normal phase the next hop is selected according to the
random proportional rule matrix pr = [pmn,r], where

pmn,r =
τmn,r∑

l∈Mn,r
τln,r

(1)

The pheromone values in (1) are determined considering the entire history of cost val-
ues Fr = {F (M1), . . . , F (Mr)} up to iteration r. The backward ants update the
pheromone values at the nodes where one or more components in Mr are deployed.
The pheromones are updated according to

τmn,r =
r∑

k=1

I(l ∈ Mn,r)β
�r

x=k+1 I(x∈Mk)H(F (Mk), γr) (2)

where I(x) = 1 when x is true and 0 otherwise. H(f, γ) = e−f/γ is the performance
function and β ∈ (0, 1) is the weight parameter, or in other words the memory fac-
tor in the auto-regressive formulation of the performance function. The auto-regressive
formulation hr(γr) = βhr−1(γr) + (1 − β)H(F (Mr), γr) is the key in CEAS for
avoiding any centralized control and synchronized iterations. This reformulation allows
the cost value F (Mr) to be calculated immediately after a single ant ends its forward
movement, i.e. the ant manages to find a mapping for all the components originally
assigned to it. Now, iteration r represents the total number of updates, in other words,
the total number of backward ants returned. The reformulated performance function,
hr(γr) can be approximated by

hr(γr) ≈ 1 − β

1 − βr

r∑

i=1

βr−ie−
F (Mi)

γr (3)

see [13]. Thus, a digest of the search history is applied, where older cost values gradu-
ally disappear, i.e. evaporate. This evaporation is achieved using the memory factor β
that provides geometrically decreasing weights for the output of the performance func-
tion. The control parameter, γr can be determined by minimizing γ subject to h(γ) ≥ ρ,
where ρ is the search focus parameter (typically 0.05 or less). For more details about
the parameters and solutions to (2) and (3) see [28].

4 Application of Ant-Based Deployment Mapping

The deployment logic can be considered as an optimization task continuously executed
by independent ant-like agents in the target network hosting the service we model. The
continuous ant behavior contributes to the advantage of our approach, namely that the
same logic can be used for an initial static mapping and for an online redeployment
mechanism.

At first, every ant is assigned a task of deployment of C components. Thereafter,
ants are started continuously and proceed with a random-walk on the provided net-map
randomly selecting each next node to visit. Behavior at a visited node depends on if the

260 M.J. Csorba, P.E. Heegaard, and P. Herrmann

ant is an explorer or a normal ant. A normal ant selects a subset of C governed by the
pheromone levels at the node it currently resides in and stores its selection mn,r in a
mapping list Mr, which is carried along by the ant. Similarly, an explorer ant selects a
subset mn,r based on a random decision instead of the distributed pheromone database.
Explorer ants are used for exploring the available net-map, both initially and later as
well for covering up fluctuations in the network, e.g. new nodes appearing. More pre-
cisely, the effects of exploration are twofold. First, as optimization starts explorer ants
are used to cover up a significant amount of the problem space via random sampling.
The required number of initial exploration iterations depend on the problem size, but it
can be estimated by sampling the pheromone database size. After that, the normal phase
starts, in which case only a fraction of the ants generated are flagged as explorers, thus
allowing for the required responsiveness to changes in the environment, while normal
ants are focusing on finding the optimum.

Once an ant has deployed all its assigned components the resulting mapping Mr can
be evaluated by applying the cost function F (Mr) derived from the service specifica-
tion. A more concrete example on F (Mr) can be found in Sect. 5. Once the mapping
is evaluated, the ant goes back along the nodes in its path that has been stored in the
hop-list Hr and updates pheromone values according to Equation (2) corresponding to
the pairs of component sets and nodes it has selected during its journey. After that, a
new iteration starts as a new ant is emitted, unless a stopping criteria is met. A stop-
ping criteria can be constructed by observing the moving average of the evolving cost
value, i.e. detecting convergence to a suggested solution. Another option is sampling
the size of the distributed pheromone database during an iteration. After convergence a
very strong pheromone value will emerge in the database, while inferior solutions will
evaporate. The described process is summarized in Algorithm 1.

Algorithm 1. Deployment mapping of C = {c1, . . . , cE} component instances
1. Select the initial node n ∈ N where the search will start randomly.
2. Select a set of components mn,r ⊆ C which satisfies n ∈ R for every ci ∈ mn,r according

to the random proportional rule (normal ant), Equation (1), or in a totally random manner
(explorer ant). If such a set cannot be found, goto step 5.

3. Update the ant’s deployment mapping set, Mr = Mr + {mn,r}.
4. Update the set of components to be deployed, C = C − mn,r .
5. Select next node, n randomly and add n to the hop-list Hr = Hr + {n}.
6. If C �= ∅ then goto 2., otherwise evaluate F (Mr) and update the pheromone values, Equation

(2) corresponding to the {mn,r} ∈ Mr mappings going backwards along Hr.
7. If stopping criteria is not met then increment r, initialize and emit new ant and goto 1.

Generally, we have a trade-off between convergence speed and solution quality.
Nevertheless, while deploying a service in a dynamic environment, which is our goal,
a pre-mature solution that satisfies both functional and non-functional requirements of-
ten suffices. Thus the optimality requirement can be relaxed while taking restoration time
requirements into consideration. Besides, it has been proven that ACO systems do in fact
find the optimum at least once with probability close to one and when this has happened
they converge to the optimum in a finite number of iterations. Since CEAS can be con-
sidered as a subclass of ACO the optimal deployment mapping will eventually emerge.

Cost-Efficient Deployment of Collaborating Components 261

5 Analysis of a Problem

As a representative example, we consider the scenario originally from Efe dealing with
heuristical clustering of modules and assignment of clusters to nodes [29]. This scenario
has also been investigated by Widell et al., and a comparison to results of several other
authors can be found in [6]. This scenario, even though artificial and may not be tangible
from a designer’s point of view, is sufficiently complex to test our deployment logic. The
problem is defined in our approach as a collaboration of E = 10 components (labelled
c1 . . . c10) to be deployed and K = 14 collaborations between them kj , j = 1 . . .K , as
depicted in Fig. 4. We consider three types of requirements in this specification. Besides
the execution and communication costs, we have a restriction on components c2, c7, c9,
regarding their location. They must be bound to nodes n2, n1, n3, respectively.

c3
k3

Comm.
cost = 30

��
��c2

c5

c1

c6

��
��c9

c10

c4

��
��

c7

c8

k 4
k 1

k 2

k 6

k5

k 14

k 12

k 11

k 8

k9
k13

k 10

k 7

Comm.
cost = 20

Comm.
cost = 20

Comm.
cost = 15

Comm.
cost = 40

Comm.
cost = 10

Comm.
cost = 20

Comm.
cost = 10

Comm.
cost = 20

Comm.
cost = 15

Comm.
cost = 15

Comm.
cost = 10

Comm.
cost = 50

Comm.
cost = 25

Exec.
cost = 15

Exec.
cost = 30

Exec.
cost = 15

Exec.
cost = 25

Exec.
cost = 20

Exec.
cost = 25

Exec.
cost = 10

Exec.
cost = 20

Exec.
cost = 10

Exec.
cost = 35

n1

n3

n2

aa

aa

aa

aa

Fig. 4. Collaborations and components in the example scenario

Furthermore, to be able to use similar mechanisms for specifying the net-map for
the deployment logic, we propose to use the same object paradigm UML employs to
reduce complexity. Thus, we specify the underlying physical map of hosts as a diagram,
depicted in Fig. 5.

In this example, the target environment consists only of N = 3 identical, inter-
connected nodes with a single provided property, namely processing power and with
infinite communication capacities. Accordingly, we only observe the total load

262 M.J. Csorba, P.E. Heegaard, and P. Herrmann

n1: Processor Node

- Average load : float

n2: Processor Node

- Average load : float

n3: Processor Node

- Average load : float

aa

aa aa

Fig. 5. The target network of hosts in the example scenario

(l̂n,r, n = 1 . . .N) of a given deployment mapping at each node. The communication
cost between two components is considered significant only if it appears between two
separate nodes, and we will strive for a global optimal solution of equally distributed
load among the processing nodes and the lowest cost possible, while taking into account
the NFRs, execution cost fci, i = 1 . . . E and communication cost fkj , j = 1 . . .K .
fci and fkj are derived from the service specification, thus, the total offered execution

load can be calculated before optimization starts as
∑E

i=1 fci . This way, the logic can
be aware of the target load

T =
∑E

i=1 fci

N
(4)

By looking at the example in Fig. 4 and Fig. 5 for this service we have T ∼= 68. Given
a mapping Mr = {mn,r}, the total load can be obtained as l̂n,r =

∑
ci∈mn,r

fci .
Furthermore, the overall cost function F (Mr) becomes

F (Mr) =
N∑

n=1

|l̂n,r − T |+
K∑

j=1

Ij fkj (5)

for mapping Mr suggested by ant r, where

Ij =
{

1, if kj external
0, if kj internal to a node (6)

Optimization governed by the cost function F (Mr) starts with aligning pheromone
values with the sets of deployed components. With the underlying set of nodes (N) each
ant will form N discrete sets from the set of available components (C) that need to be
deployed and evaluate the outcome of that deployment mapping (Mr) at the end of its
run. However, the ants only need to carry a list of the unrestricted components, i.e. with
the exception of components c2, c7, c9 that are bound to a node by a constraint, leaving
the rest of 7 components for mapping. A flag is assigned to each of the remaining com-
ponents giving 27 as the number of possible combinations for a set at a node. Thus, the
pheromone database at each node has to accommodate 27 floating point numbers in this
case. After normalizing the pheromones in a node we can observe the probability distri-
bution of component sets mapped to that particular node by the ant system. Eventually
the optimal solution(s) will emerge with probability one after convergence.

Cost-Efficient Deployment of Collaborating Components 263

The pheromone database is indexed by a component set identifier. For example, Id.
36, which is equivalent to ′0100100′B, indicates that the free components c4 and c8 are
deployed on that node. In Fig. 6, pheromone levels (normalized as probabilities) for two
sets of components at node n1 are depicted. After the initial phase of 10000 explorer
ants doing random search the emergence of the solution deemed optimal can be seen in
Fig. 6(a) for the set of components c4, c8 in addition to c7 attached in advance. Also, in
Fig. 6(b) evolution of the pheromone corresponding to a suboptimal set of components,
c4, c6, c8 and c7 deployed at n1, is shown (observe the different scales on the Y-axis).

(a) Id. 36. (b) Id. 52.

Fig. 6. Pheromones at node n1

The optimal deployment mapping can be observed in Table 1. The lowest possible
deployment cost, according to (5) is 17 + (200 − 100) = 117.

Table 1. Optimal deployment mapping in the example scenario

node components ln,opt |ln,opt − T | internal collaborations
n1 c4,c7,c8 70 2 k8, k9

n2 c2,c3,c5 60 8 k3, k4

n3 c1,c6,c9,c10 75 7 k11, k12, k14�
cost 17 100

The rare event of finding the optimal deployment with the lowest cost during a ran-
dom search can be observed in Fig. 7. The exploration phase consists of the first 2000
ants, conducting a random search and resulting in a random cost figure. However, af-
ter exploration ends, from ant number 2001, the real optimization phase starts and the
overall deployment cost is converging to the optimal value of 117. At the same time,
we propose usage of a pheromone database that is allocated dynamically in the mem-
ory for storing pheromone values based on a threshold level that evaporates all the
pheromone entries under a certain significance level. In Fig. 7, 1% threshold is applied,
i.e. pheromones smaller than 1% of the highest value are deemed insignificant and are
eliminated from the database.

The database size tops at 27 as the solution space is starting to be covered by explo-
ration ants and thus it can be used as an indicator to switch to the optimization phase.
Likewise, when the overall cost converges to the optimal value (117) the size of the

264 M.J. Csorba, P.E. Heegaard, and P. Herrmann

database approaches one (if there is a single solution like in the example) as the single
optimal solution prevails, allowing for convergence detection.

We can compare our results to the results obtained using the centralized CE method.
A comparison between different solutions to the original problem from Efe can be found
in [6]. Widell et al., in accordance with the original CE method, uses a selected distribu-
tion to generate a sample iteration, which is in case of the component deployment prob-
lem a particular deployment mapping. The generated samples are then used for updates
in the parameter of the selected distribution. The updates are based on an assessment
of the quality of the sample iteration. Sampling and updating is repeated until conver-
gence is detected, which, due to stochasticity though might not be the optimal mapping
of components. In fact, the number of ant runs in distributed CEAS can be compared to
full iterations in the centralized CE method, as a single ant’s lifetime (from leaving the
nest until its return) is equivalent to the number of samples taken multiplied with the
number of iterations.

Fig. 7. Observed cost and pheromone database sizes

For example, in [6] using 100 samples the mean number of iterations required for
finding the optimal solution with 80% confidence is 41, which in turn is approximately
equivalent to 100 · 41 = 4100 ant runs. We can see that using the same CE focus pa-
rameter, i.e. ρ = 0.01, and a memory factor of β = 0.998 (cf. Sect. 3), we can expect
convergence times to average at 1200 ant runs for arbitrary number of explorations
(Fig. 8) using our distributed CEAS approach. Here, we only compared our results to
the most efficient solution by Widell et al. However, it is difficult to compare the two
approaches in terms of number of iterations because they differ in the methodology, i.e.
multiple samples in one iteration in Widell’s work versus one iteration as a sample in
CEAS. Nonetheless, we have found that our approach is capable of finding the optimal
solution (cf. Table 1) with at least the same confidence, requires less iterations, thus it is
resource conserving and last but not least it is a completely distributed logic compared
to the original CE-based method and the other strictly centralized solutions, e.g. clus-
tering, bin-packing, etc.

Cost-Efficient Deployment of Collaborating Components 265

Fig. 8. The observed cost and the number of ants required for convergence as a function of the
number of explorer ants

In Fig. 8, results of running the deployment logic with different amounts (shown on
the x-axis) of explorer ants are depicted. The mean values of 200 subsequent executions
in each setting can be observed with the standard deviation of the results included as
error bars. The deployment logic is currently implemented in a simulator written in the
Simula/DEMOS language [30] for evaluation purposes.

It can be noted that above a sufficient amount of initial exploration of the problem
the logic is quite robust in finding the optimal solution and stable in convergence time
as well. However, in our algorithm we do not set the number of explorers to a constant
number, instead we propose to use the dynamic database size as an indication for suffi-
cient exploratory runs. Also, an advantage of our approach is that it can provide alterna-
tive solutions weighted by their cost and corresponding pheromone values will indicate
the deployment mapping for those solutions. So, in a system where convergence time
is very critical, even premature results can be used for near optimal deployment.

6 Closing Remarks

We presented a novel approach for the efficient deployment of software components
taking into account QoS requirements captured during the modelling phase in the ser-
vice engineering approach, SPACE. The procedure starts from high-level QoS goals and
through requirement profiles utilizes swarm intelligence to provide solutions and to aid
dynamic deployment. The logic itself can be executed in a fully distributed manner, thus
it is not prone to deficiencies of existing centralized algorithms, such as performance
bottlenecks and single point of failures. Our approach does not require a centralized
database, instead it uses the analogy of pheromones distributed across the network of
hosts. Furthermore, the logic, as it is presented here, is applied to provide the opti-
mal, initial mapping of components to hosts, i.e. the network is considered rather static.
However, our eventual goal is to develop support for run-time redeployment of com-
ponents, this way keeping the service within an allowed region of parameters defined
by the requirements. As the results with CEAS show our logic will be a prominent
candidate for a robust and adaptive service execution platform.

Our work is conducted in cooperation with the ISIS (Infrastructure for Integrated
Services) project funded by the Research Council of Norway comprising of multiple

266 M.J. Csorba, P.E. Heegaard, and P. Herrmann

participants both from industry and academia. The methodology and algorithms
presented are in-line with the objectives of ISIS that are to create a well-established
service engineering platform for collaboration-oriented models, covering a develop-
ment cycle from the requirements to seamless execution in a heterogenous and dynamic
environment.

In our future work we will investigate applicability and utility of different deploy-
ment strategies based on the existing logic. Also, we plan to experiment with stochastic
optimization methods other than the CE method. Another issue is database size manage-
ment locally to the nodes hosting the service. The first step to address this issue was the
introduction of dynamically allocated databases, which will be investigated further. Es-
pecially, in case of deployment of multiple services at the same time, which is one of the
topics in our future research. We presented a novel approach for the efficient deploy-
ment of software components taking into account QoS requirements captured during
the modelling phase in the service engineering approach, SPACE. The procedure starts
from high-level QoS goals and through requirement profiles utilizes swarm intelligence
to provide solutions and to aid dynamic deployment. The logic itself can be executed
in a fully distributed manner, thus it is not prone to deficiencies of existing centralized
algorithms, such as performance bottlenecks and single point of failures. Our approach
does not require a centralized database, instead it uses the analogy of pheromones dis-
tributed across the network of hosts. Furthermore, the logic, as it is presented here, is
applied to provide the optimal, initial mapping of components to hosts, i.e. the network
is considered rather static. However, our eventual goal is to develop support for run-time
redeployment of components, this way keeping the service within an allowed region of
parameters defined by the requirements. As the results with CEAS show our logic will
be a prominent candidate for a robust and adaptive service execution platform.

Our work is conducted in cooperation with the ISIS (Infrastructure for Integrated Ser-
vices) project funded by the Research Council of Norway comprising of multiple par-
ticipants both from industry and academia. The methodology and algorithms presented
are in-line with the objectives of ISIS that are to create a well-established service engi-
neering platform for collaboration-oriented models, covering a development cycle from
the requirements to seamless execution in a heterogenous and dynamic environment.

In our future work we will investigate applicability and utility of different deploy-
ment strategies based on the existing logic. Also, we plan to experiment with stochastic
optimization methods other than the CE method. Another issue is database size man-
agement locally to the nodes hosting the service. The first step to address this issue was
the introduction of dynamically allocated databases, which will be investigated further.
Especially, in case of deployment of multiple services at the same time, which is one of
the topics in our future research.

References

1. Bastarrica, M.C., et al.: A Binary Integer Programming Model for Optimal Object Distribu-
tion. In: Int’l. Conf. on Principles of Distributed Systems, Amiens (1998)

2. Hunt, G.C., Scott, M.L.: The Coign Automatic Distributed Partitioning System. In: Proceed-
ings of the 3rd Symposium on Operating Systems Design and Implementation, New Orleans
(1999)

Cost-Efficient Deployment of Collaborating Components 267

3. Kichkaylo, T., et al.: Constrained Component Deployment in Wide-Area Networks Using AI
Planning Techniques. In: Int’l. Parallel and Distributed Processing Symposium (2003)

4. Malek, S.: A User-Centric Framework for Improving a Distributed Software System’s De-
ployment Architecture. In: Proceedings of the doctoral track at the 14th ACM SIGSOFT
Symposium on Foundation of Software Engineering, Portland (2006)

5. Meling, H.: Adaptive Middleware Support and Autonomous Fault Treatment: Architectural
Design, Prototyping and Experimental Evaluation. PhD Thesis, Norwegian University of
Science and Technology, Department of Telematics (May 2006)

6. Widell, N., Nyberg, C.: Cross Entropy based Module Allocation for Distributed Systems.
In: Proceedings of the 16th IASTED International Conference on Parallel and Distributed
Computing and Systems, Cambridge (2004)

7. Fernandez-Baca, D.: Allocating modules to processors in a distributed system. IEEE Trans-
actions on Software Engineering 15(11) (1989)

8. Kraemer, F.A., Herrmann, P.: Service Specification by Composition of Collaborations - An
Example. In: Proceedings of the 2006 IEEE/WIC/ACM international conference on Web
Intelligence and Intelligent Agent Technology, Hong Kong (2006)

9. Herrmann, P., Kraemer, F.A.: Design of Trusted Systems with Reusable Collaboration Mod-
els. In: Proceedings of the Joint IFIP iTrust and PST Conferences on Privacy, Trust Manage-
ment and Security, Moncton. Springer, Boston (2007)

10. Kraemer, F.A., Slåtten, V., Herrmann, P.: Engineering Support for UML Activities by Auto-
mated Model-Checking - An Example. In: Proceedings of the 4th International Workshop on
Rapid Integration of Software Engineering Techniques (RISE 2007), University of Luxem-
bourg (2007)

11. Kraemer, F.A., Herrmann, P.: Transforming Collaborative Service Specifications into Effi-
ciently Executable State Machines. Electronic Communications of the EASST 6 (2007)

12. Kraemer, F.A., Herrmann, P., Bræk, R.: Aligning UML 2.0 State Machines and Temporal
Logic for the Efficient Execution of Services. In: Meersman, R., Tari, Z. (eds.) OTM 2006.
LNCS, vol. 4276, Springer, Heidelberg (2006)

13. Helvik, B.E., Wittner, O.: Using the Cross Entropy Method to Guide/Govern Mobile Agent’s
Path Finding in Networks. In: Proceedings of 3rd International Workshop on Mobile Agents
for Telecommunication Applications (2001)

14. Dorigo, M., et al.: The Ant System: Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics Part B: Cybernetics 26(1) (1996)

15. Schoonderwoerd, R., et al.: Ant-based Load Balancing in Telecommunications Networks.
Adaptive Behavior 5(2) (1997)

16. Di Caro, G., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Communications Net-
works. Journal of Artificial Intelligence Research 9 (1998)

17. Di Caro, G., Ducatelle, F., Gambardella, L.M.: AntHocNet: An Adaptive Nature-Inspired
Algorithm for Routing in Mobile Ad Hoc Networks. European Transactions on Telecommu-
nications (ETT) - Special Issue on Self Organization in Mobile Networking 16(5) (2005)

18. Rubinstein, R.Y.: The Cross-Entropy Method for Combinatorial and Continuous Optimiza-
tion. Methodology and Computing in Applied Probability (1999)

19. de Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A Tutorial on the Cross-Entropy
Method. Annals of Operations Research 134 (2005)

20. Wittner, O., Helvik, B.E.: Distributed soft policy enforcement by swarm intelligence; appli-
cation to load sharing and protection. Annals of Telecommunications 59 (2004)

21. Wittner, O., Helvik, B.E., Nicola, V.F.: Internet Failure Protection using Hamiltonian p-
Cycles found by Ant-like Agents. Journal of Network and System Management, Special
issue on Self-Managing Systems and Networks (2005)

268 M.J. Csorba, P.E. Heegaard, and P. Herrmann

22. Wittner, O., Heegaard, P.E., Helvik, B.E.: Scalable Distributed Discovery of Resource Paths
in Telecommunication Networks using Cooperative Ant-like Agents. In: Proceedings of the
Congress on Evolutionary Computation, Canberra (2003)

23. Heegaard, P.E., et al.: Self-managed virtual path management in dynamic networks. In:
Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van
Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, Springer, Heidelberg (2005)

24. Heegaard, P.E., et al.: Distributed asynchronous algorithm for cross-entropy-based combi-
natorial optimization. Rare Event Simulation and Combinatorial Optimization, Budapest
(2004)

25. Heegaard, P.E., Wittner, O.: Restoration performance vs. overhead in a swarm intelligence
path management system. In: Proceedings of the Fifth International Workshop on Ant Colony
Optimization and Swarm Intelligence, Brussels (2006)

26. Heegaard, P.E., Wittner, O.J.: Self-tuned refresh rate in a swarm intelligence path man-
agement system. In: de Meer, H., Sterbenz, J.P.G. (eds.) IWSOS 2006. LNCS, vol. 4124,
Springer, Heidelberg (2006)

27. Kjeldsen, V., Wittner, O., Heegaard, P.E.: Distributed and Scalable Path Management by a
System of Cooperating Ants (submitted, 2008)

28. Wittner, O.: Emergent Behavior Based Implements for Distributed Network Management.
PhD thesis, Norwegian University of Science and Technology, NTNU, Department of Telem-
atics (2003)

29. Efe, K.: Heuristic models of task assignment scheduling in distributed systems. Computer
(June 1982)

30. Birtwistle, G.: Demos - a system for discrete event modelling on simula (1997)

STUNT Enhanced Java RMI

Oliver Haase, Wolfgang Reiser, and Jürgen Wäsch

Computer Science Department,
Konstanz University of Applied Sciences,

Constance, Germany

Abstract. Java RMI uses HTTP tunneling for NAT traversal. While
HTTP tunneling is a valid technique for traditional client–server–archi-
tectures, it is too heavy-weight for highly distributed systems such as
peer-to-peer applications. In this paper, we propose a STUNT enhanced
RMI mechanism that takes advantage of the hole punching NAT traver-
sal technique that many successful peer-to-peer applications use. Because
the modified communication behavior is made part of the RMI server
stub, our approach is fully transparent to the RMI client.

Keywords: Java RMI, NAT traversal, STUNT, TCP hole punching.

1 Introduction

Java’s platform independence and built-in networking support have made it an
interesting language for distributed computing. One key feature for the devel-
opment of distributed Java applications is the Java Remote Method Invocation
(RMI) technology [6]. The main idea behind RMI is to provide a communica-
tion mechanism that allows developers to use the method invocation paradigm
to communicate between remote objects. This simplifies the development pro-
cess because programmers do not need to deal with communication protocols,
on-the-wire data representation, and connection management. The RMI commu-
nication protocol, Java Remote Method Protocol (JRMP), which is used for all
communication between RMI clients and servers, builds on top of the TCP/IP
protocol stack. In order to seamlessly connect RMI clients and servers through-
out the Internet, the ubiquitous reachability of all involved entities via TCP/IP
is essential.

Since the early days of the Internet—when every node had its own globally
unique IP address and could be addressed directly—things have changed as a
result of security considerations and a shortage of IP addresses. The old ad-
dressing model has been replaced with a new addressing model consisting of one
global address realm and innumerable private address realms linked by Network
Address Translators (NAT) [10].

Although this model is suitable for traditional client–server communication
where at least the server is in the global address realm and can be reached
directly, it makes it complicated for scenarios where the server, or both server
and client, reside in different private networks. This kind of scenario is clearly on

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 269–274, 2008.
c© IFIP International Federation for Information Processing 2008

270 O. Haase, W. Reiser, and J. Wäsch

the rise with the spread of peer-to-peer technologies beyond use of file-sharing.
Therefore, a solution to make RMI communication work even in the presence of
NAT is essential for RMI to become a viable technology for modern peer-to-peer
and other highly distributed applications.

The RMI built-in solution for NAT traversal, HTTP tunneling, requires sig-
nificant administrative overhead and in many cases is in conflict with corporate
security policies. In addition, the approach is not feasible for home users whose
entire network sits behind the Internet service provider’s NAT box. Another
drawback is the bandwidth inefficiency due to the tunneling overhead.

Our primary focus is to develop a light-weight RMI NAT traversal technique
with minimimal overhead that works with no changes to RMI clients and mini-
mal changes to RMI servers. Therefore, we propose an enhanced RMI mechanism
for NAT traversal that is based on a technique known as hole punching (first
mentioned in [8]). Even though the name suggests otherwise, hole punching does
not compromise the security of private networks, but rather empowers applica-
tions to communicate within the security policies of different types of NATs (e.g.,
cone NAT, restricted cone NAT, port restricted cone NAT, symmetric NAT [5]).
There are a number of commerical applications which use hole punching tech-
niques — Skype [12,11] is certainly one of the best known of them.

In order to use hole punching, nodes must have the capability to identify the
presence and type of NAT they are behind, as well as their public IP address/port
combination. One way to gather all this information is to use a public STUNT
(Simple Traversal of UDP Through NATs and TCP too) server. STUNT is a
protocol presented by Guha et al. in [3,4] which extends the STUN protocol [9]
with TCP capabilities.

This paper shows the use of the hole punching technique to establish an RMI
communication between two NATed RMI parties. In order to make this hole
punching technique work, both parties have to go through several steps in their
communication process. They first have to determine whether they are behind
a NAT and which their public IP address/port combination is. After they have
collected this information with the help of a public STUNT server, both parties
have to publish the results through a public Rendezvous Server. To set up a
communication, party A polls the data of the public communication endpoint of
the other party from the Rendezvous Server. This polling automatically triggers
a mechanism which pushes party A’s public IP address/port combination to
party B. After this step, both parties have each other’s address data which
enables them to perform the actual hole punching process [8] to set up the
communication between A and B.

In the following, we describe how to integrate STUNT-based hole punching
into the RMI communication concept. Our solution makes use of a custom RMI-
SocketFactory to modify the RMI connection behavior: after a failed direct RMI
connection attempt, both RMI client and RMI server go through the STUNT-
enhanced RMI communication process to set up a connection between the NATed
RMI parties using hole punching.

STUNT Enhanced Java RMI 271

2 STUNT Enhanced Java RMI Solution

Integrating TCP hole punching into Java RMI evidently changes the way Java
RMI communication usually takes place. One of our top goals, however, is to
change the RMI mechanism without the need to modify any RMI client, i.e.,
whether it uses a regular or a STUNT enhanced RMI server object should be
transparent to the client. For the server object it is acceptable to implement
behavior specific to STUNT enhanced RMI; the changes to regular RMI should
nevertheless be minimal.

To show how we achieved the above mentioned transparency, a few words
about Java RMI are helpful: An RMI client stub, i.e., the local proxy of the
remote server object, consists of two parts, the RMISocketFactory and the ac-
tual RemoteReference. The RMISocketFactory controls the instantiation of
the sockets used for RMI communication, and hence controls the communi-
cation behavior itself. This technique makes the RMISocketFactory the ideal
hook point to alter the RMI communication while still complying to standard
RMI on the API level. We thus replace the standard RMISocketFactory with a
custom RMISocketFactory to transparently change the RMI communication
behavior on the client side. The second component of the server stub, the
RemoteReference, defines the IP address or the hostname of the RMI server
object. When the server object is exported, i.e. when the client stub is cre-
ated, the value of the Java property java.rmi.server.hostname is copied into
the RemoteReference. Setting this property to a publicly reachable IP address
pushes the desired address into the RemoteReference.

An RMI client obtains a server stub in one of two ways: It either (1) gets
it as a return value or return parameter from another remote server object,
or (2) it uses the RMI registry, the RMI specific naming service. Because the
communication process in case (1) is a mere subset of the process in case (2),
we focus on case (2) in the following.

The RMI registry is both an API specification and a reference implementation
which is part of Sun Microsystem’s Java SE. For security reasons (or a lack of
proper authentication and authorization mechanisms), the reference implemen-
tation needs to run on the same machine as the RMI server object, a restriction
which is not acceptable for our solution exactly because the server machine can
sit behind a NAT box. Part of our solution is therefore a custom RMI registry
that can register server objects from other machines. Again, for an RMI client,
this change is transparent because the client uses the standard API to locate
and query the custom RMI registry.

2.1 Communication Process

The sequence diagram in figure 1 shows the STUNT enhanced RMI communi-
cation process. This process is divided into server (a© to c©) and client (1© to
6©) behavior.

In step a©, the server interrogates a STUNT server to learn its public IP
adress and NAT type. It then sets the java.rmi.server.hostname property to its

272 O. Haase, W. Reiser, and J. Wäsch

Client Server

NAT 1 NAT 2

STUNT
Server

Rendezvous
Server

RMI
Registry

(RemoteRef, CustomRMISocketFactory)

1

2

3

4

5

6

connect ion attempt to server

retr ieve contact data of the server

contact data (server)
contact data (cl ient)

RMI conncetion establishment with the help of Hole Punching

a

b

c

retrieve own public IP

public IP

register remote object

store contact data

1.) set hostname
property

2.) create &
export object

retrieve own public IP

public IP

store contact data

analogical

a c&

Fig. 1. STUNT RMI communication process

public IP address, creates and exports the server object and registers it with the
naming service, i.e. the custom RMI registry (step b©). Please note that when
exporting the server object, the RMISocketFactory part of the stub is set to
our custom RMISocketFactory. The server is now ready for incoming remote
method invocations.

The client uses the standard RMI API to locate the naming service and
look up the stub for the remote server object 1©. After this step, the custom
RMIClientSocketFactory controls the further communication process, while the
client still executes regular remote method invocations. Steps 2© and 3© are ana-
log to steps a© and c© on the server side; the client interrogates its public IP
address and NAT type, and has this data stored in the rendezvous server. In step
4©, the client tries to directly connect to the remote object. This connection at-
tempt succeeds only if the remote object is either in the same private network or
belongs to the public Internet. If the direct connection attempt fails, the client
contacts the rendezvous server (step 5©) to retrieve the remote server object’s
contact address. The rendezvous server not only returns the remote object’s pub-
lic IP address, but also pushes the RMI client’s public IP address to the RMI
server object. After both hosts have received the other party’s contact address
they hole-punch their NAT boxes to establish a connection between each other.
More specifically, each party’s attempt to contact the other side establishes a
temporary mapping in their NAT box that allows the other party to traverse
the far side’s NAT box.

STUNT Enhanced Java RMI 273

2.2 Components

Our STUNT enhanced RMI mechanism comprises the following entities, some
of which are standard off-the-shelf components, while others require custom im-
plementations.

STUNT Server: The STUNT Server implements an extended version of the
STUN protocol which includes TCP capabilities. The STUNT server determines
the global IP addresses and ports which are assigned by the outermost NAT,
assert its type and transmits them back to the host. Public STUNT servers are
readily available in the Internet, and can be employed without changes.

Naming Service: Part of our solution is a RMI registry compliant custom nam-
ing service, which is enhanced with security features like access control to ensure
that remote objects can be managed in a secure way. Keeping the naming ser-
vice compliant to the standard registry ensures that clients can still use the
LocateRegistry interface to connect to the service. This naming service must be
publicly reachable and can, e.g., be a part of the rendezvous server.

Rendezvous Server: The rendezvous server is a publicly reachable server, pro-
viding a mapping service which maps global unique identifiers onto communica-
tion endpoint information. As shown in figure 1, both STUNT-RMI client and
STUNT-RMI server register their contact address with this server. Appropriate
unique identifiers are URIs with the form <user>@<host> because these URIs
are unique and valid despite NAT boundaries. In order to keep the mapping ta-
ble clean and to prevent entries from becoming stale, we propose to add a lease
time for each entry and to set appropriate intervals to clear out old data.

Custom RMISocketFactory: As mentioned before, the RMISocketFactory is re-
sponsible for the RMI client/server communication behavior. In our solution the
RMISocketFactory implements the STUNT enhanced communication behavior
as shown in figure 1.

3 Conclusion and Future Work

All of the necessary components—except for the STUNT server several instances
of which are publicly available in the Internet—are currently under development.
As soon as the implementation work is completed, we will evaluate the solution
in terms of operability, performance, and scalability. The results will be made
public to the research community.

In a previous project, we have developed a neighbor-centric peer-to-peer in-
frastructure based on Java RMI communication [7]. That project has been the
main driver for the light-weight NAT traversal solution presented in this paper.
Consequently, the implementation of the STUNT enhanced RMI approach will
be integrated into our peer-to-peer infrastructure. We believe, however, that our

274 O. Haase, W. Reiser, and J. Wäsch

solution has the potential to be useful for other Java RMI based projects, infras-
tructures, and middlewares. Or to put it differently, we believe that the lack of a
light-weight, zero-configuration NAT traversal solution is a major obstacles for a
more widespread use of Java RMI in large-scale, industry grade distributed ap-
plications. We therefore plan to make the resulting software and servers available
for public use.

References

1. Biggadike, A., Ferullo, D., Wilson, G., Perrig, A.: NATBLASTER: Establishing
TCP connections between hosts behind NATs. In: Proceedings of ACM SIGCOMM
ASIA Workshop (2005)

2. Ford, B., Srisuresh, P., Kegel, D.: Peer-to-peer communication across network ad-
dress translators. In: Proceedings of the 2005 USENIX Annual Technical Confer-
ence (2005)

3. Francis, P., Guha, S.: Simple traversal of UDP through NATs and TCP too
(STUNT), http://nutss.gforge.cis.cornell.edu/

4. Francis, P., Guha, S., Takeda, Y.: NUTSS: A SIPbased approach to UDP and TCP
network connectivity. In: SIGCOMM 2004 Workshops (2004)

5. Francis, P., Guha, S.: Characterization and Measurement of TCP Traversal through
NATs and Firewalls. In: Proceedings of Interet Measurement Conference (IMC)
(2005)

6. Grosso, W.: Java RMI - Designing & Building Distributed Applications. O‘Reilly
& Associates (2002)

7. Haase, O., Todt, A., Wäsch, J.: A Peer-To-Peer Ring Infrastrucure for Neighbor-
Centric Applications. In: Enokido, T., Barolli, L., Takizawa, M. (eds.) NBiS 2007.
LNCS, vol. 4658, Springer, Heidelberg (2007)

8. Holdrege, M., Srisuresh, P.: RFC3027 - Protocol Complications with the IP Net-
work Address Translator (2001), http://tools.ietf.org/html/rfc3027

9. Huitema, C., Mahy, R., Rosenberg, J., Weinberger, J.: RFC3489 - STUN - Simple
Traversal of User Datagram Protocol (UDP) Through Network Address Translators
(NATs) (2003), http://tools.ietf.org/html/rfc3489

10. Holdrege, M., Srisuresh, P.: RFC2663 - IP Network Address Translator (NAT)
Terminology and Considerations (1999), http://tools.ietf.org/html/rfc2663

11. Schmidt, J.: The hole trick – How Skype & Co. get round firewalls. Heise Security
(2006) [online 2007-11-21], http://www.heise-security.co.uk/articles/82481

12. Skype Limited: Guide for Network Administrators (2005) [online, 2007-11-21],
http://www.skype.com/security/guide-for-network-admins.pdf

13. Sun Microsystems, Inc.: JXTA Java Standard Edition v2.5: Programmers Guide
(2007) [online 2007-12-03], https://jxta-guide.dev.java.net

http://nutss.gforge.cis.cornell.edu/
http://tools.ietf.org/html/rfc3027
http://tools.ietf.org/html/rfc3489
http://tools.ietf.org/html/rfc2663
http://www.heise-security.co.uk/articles/82481
http://www.skype.com/security/guide-for-network-admins.pdf
https://jxta-guide.dev.java.net

Facilitating Complex Web Service Interactions

through a Tuplespace Binding

Daniel Wutke, Daniel Martin, and Frank Leymann

Institute of Architecture of Application Systems
University of Stuttgart

Universitaetsstrasse 38, 70569 Stuttgart, Germany
{wutke,martin,leymann}@iaas.uni-stuttgart.de

http://www.iaas.uni-stuttgart.de

Abstract. The SOAP messaging framework, as one key technology of
the Web service technology standard stack, defines a standardized mes-
sage format for Web service interactions, a set of rules governing their
processing and a mechanism that describes how SOAP messages can
be transmitted over different network transport protocols, called SOAP
bindings. The most prominent example for a Web service transport
today, is the Hypertext Transfer Protocol (HTTP), which however suf-
fers from certain drawbacks such as being inherently synchronous in na-
ture and not providing decoupling of message sender and receiver in
reference or time. In this paper, we present tuplespace technology as
an alternative Web service transport that is characterized by a num-
ber of properties that are not found in current Web service transports:
asynchronism, strong decoupling of sender and receiver and support for
advanced message exchange patterns, such as one-to-many interactions,
directly on the transport level. We describe the representation of SOAP
messages in tuple form and exemplify how to use the operations pro-
vided by the tuplespace interface to realize certain Web service message
exchange patterns.1

Keywords: Web Services, Message Exchange Patterns, Tuplespaces,
Web Service Binding.

1 Introduction

Web service technology has gained broad acceptance in research and industry due
to enabling loosely coupled interactions between communication partners which
can be conducted over potentially multiple different network transport protocols
while retaining end-to-end quality of services. Web services are defined by a
set of specifications that enable standards-based service description, discovery,
invocation, and composition through the use of WSDL, UDDI, SOAP, BPEL
and others.
1 This work is funded by the European Commission under the TripCom project (IST-

4-027324-STP).

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 275–280, 2008.
© IFIP International Federation for Information Processing 2008

http://www.iaas.uni-stuttgart.de

276 D. Wutke, D. Martin, and F. Leymann

The SOAP messaging framework [1] defines a standardized XML-based mes-
sage format and a set of rules that govern how SOAP processing nodes along
the message path from initial sender to ultimate receiver should process a SOAP
message. In addition, SOAP defines a mechanism to bind SOAP messages to dif-
ferent network protocols to enable their transmission between SOAP processing
nodes over a network through so-called SOAP bindings. For this purpose, they
define a serialization of the SOAP infoset in such a way that it can be transmit-
ted by a sender over the chosen network transport protocol and reconstructed by
the receiver (or the next hop/node in case of multi-hop interactions). Further-
more, they describe how the services of the underlying transport protocol (i.e.
its interface) are used to transmit the chosen serialization of the SOAP infoset
between SOAP processing nodes and describe potential failure scenarios that
can be anticipated within the binding.

Tuplespaces have their origin in the Linda coordination language, defined in [2]
as a parallel programming extension for programming languages for the purpose
of separating coordination logic from program logic. A tuplespace is conceptu-
ally similar to a piece of memory shared among all participants of an interaction
which provides clients with synchronized access to tuples (i.e. an ordered list of
typed fields) via a simple interface: tuples can be stored (using the out opera-
tion), retrieved destructively (in) and retrieved non-destructively (rd). Tuples
are retrieved associatively using a template matching mechanism, i.e. by provid-
ing values of a subset of the typed fields of the tuple to be read.

The remainder of the paper is organized as follows: first we motivate the work
presented by elaborating on certain unique properties of tuplespaces when com-
pared to existing Web service transports (Section 2). Subsequently, the SOAP
binding for the tuplespace transport is presented, consisting of (i) a description
of how the information contained in a SOAP envelope can be mapped to tu-
ples to facilitate their transmission over a JavaSpaces transport (Section 3) and
(ii) how message exchange patterns can be mapped to Linda communication
primitives (Section 4). Section 5 concludes the paper.

2 Tuplespace Binding for Web Services

As of today, HTTP [3] is still the most widely accepted Web service transport.
Due to the nature of HTTP being designed for direct, synchronous client-server
interactions, it shows certain drawbacks with regard to decoupling sender and
receiver in reference and time. As a result of tight referential coupling when
conducting Web service interactions over HTTP, the sender of a message is re-
quired to explicitly address the concrete address (also referred to as endpoint)
where a particular service implementation can be reached. If the location of the
service implementation changes, a corresponding change has to be performed
on the client. Furthermore, due to HTTP not offering decoupling in time, both
message sender and receiver have to be available at the same time. If e.g. the re-
ceiver of a Web service invocation request is not available at the time of request
sending, the message cannot be received and thus not processed. To overcome

Facilitating Complex WS Interactions through a Tuplespace Binding 277

aforementioned shortcomings with regard to decoupling message sender and re-
ceiver in reference and time, a number of SOAP bindings have been proposed
that build on messaging network transport protocols such as SMTP, XMPP or
JMS which all employ the mechanism of store-and-forward to achieve decoupling
in time (the sender hands over the message to transmit to the messaging system
which delivers it as soon as the “next hop” becomes available). In addition, mes-
sage recipients are addressed by logical identifiers instead of concrete addresses
(e.g. an e-mail address in case of SMTP or a queue/topic name in JMS) which
enables referential decoupling.

Although tuplespaces are in their use and behavior somewhat similar to mes-
saging technology (see e.g [4] for a comparison), they are characterized by certain
unique properties. In contrast to message-oriented middleware, where sender and
receiver communicate by exchanging messages over queues and topics identified
by logical addresses, in tuplespaces data is exchanged by senders publishing the
data they want to communicate to a shared space (the counterpart to a queue/-
topic in messaging) on which potentially multiple receivers are listening. Data
is consumed by the receiver in an associative manner, meaning that the receiver
of a data tuple describes its content by example, e.g. the data types of certain
tuple fields or their value. As a result, tuplespace-based communication is based
on a pull mechanism (i.e. the receivers actively select what they want to receive
by template-based consumption of tuples) as opposed to a push mechanism em-
ployed in messaging (i.e. the sender addresses a certain queue/topic, from which
it expects the receiver to consume). Furthermore, in tuplespace-oriented com-
munication, data is regarded as a published object instead of a message directed
to a certain receiver. This means that when a sender publishes a piece of infor-
mation to a tuplespace, the (one single) data tuple is available for all receivers
listening on the tuplespace (which in particular also includes the sender of the
tuple). This enables certain communication patterns that are difficult to real-
ize based on other – e.g. messaging-based – Web service transports such as the
Request-for-bid pattern described later in the paper. For instance, after publi-
cation of a message, the sender of the message can destructively consume the
message again, update its contents and re-publish it. In addition, data can easily
be directed to a set of receivers (similar to broadcast/multicast communication)
or processed by a set of potential competing consumers in style of the replicated-
worker pattern [5].

3 Mapping SOAP Messages to Tuples

To enable communication of SOAP envelopes over a network transport protocol,
(i) the SOAP envelope to be transmitted needs to be encapsulated in an object
that can be transmitted using the communication primitives of the respective
transport protocol and (ii) information necessary for message identification, de-
livery and correlation has to be added and made accessible to evaluation by the
transport. In case of tuplespace-based communication, data is encapsulated in
tuples; the individual tuple fields are defined as follows. The field identified by

278 D. Wutke, D. Martin, and F. Leymann

the Content property contains a representation of the actual SOAP envelope,
comprising both SOAP headers and SOAP body. The encoding of the SOAP
message is specified by the Content type property. In most cases, the preferred
content type is “application/soap+xml” where the SOAP message is transferred
as a XML string in UTF-8 encoding; however other encodings are possible such
as e.g. “multipart/related” in case of a MIME encoded SOAP message with bi-
nary attachments. The MEP property identifies the message exchange pattern
that governs the exchange of the respective message. Possible values for this
property are e.g. the identifiers of the WSDL 2.0 specification [6]. Each tuple
with an encapsulated SOAP message is uniquely identified via the Message ID
property. If the SOAP envelope contains a WS-Addressing [7] header block, the
WS-Addressing Message ID is propagated to the tuple level to allow its use for
template matching. To enable correlation of messages as part of interactions that
involve more that one message exchange between communication partners, the
Correlation ID property of a message can contain the Message ID of another
message which is “in relation” to the given message. How a message relates to
the message with the given correlation ID is defined through the Relationship
type property. Valid values for the relationship type property are dependent on
the message exchange pattern the message belongs to; WS-Addressing relation-
ship type values are reused where possible. To enable addressing one particular
Web service provider in case multiple Web service providers are connected to
the same tuplespace, the Service name property must contain the name of the
destination service in form of a Uniform Resource Identifier (URI). To allow
service providers to correctly dispatch incoming SOAP messages to a service
implementation (if the service provider for instance offers more than one oper-
ation), the SOAP action property conveys the semantics of the SOAP message
in the content property in form of a URI. The Binding version property de-
scribes the version of the binding to be used to allow for further development
and extension of the binding while still retaining backwards compatibility in
implementations. In case the message encapsulated in the content property is
a SOAP fault, the Is fault property contains a boolean true value, otherwise
it has the value of a boolean false. Propagating this information to the tuple
level enables e.g. convenient retrieval of all fault or non-fault messages. In case a
SOAP processor encounters any errors while processing the SOAP message, e.g.
while parsing the message the Unprocessable property is set to a boolean value
true. This facilitates simple retrieval of unprocessable messages by administra-
tors for debugging purposes and can be used to prevent repeated consumption
of unprocessable messages.

4 Mapping WS Interaction Patterns to Linda
Coordination Primitives

In the following paragraphs, the mapping of Web service message exchange pat-
terns (MEP) to sequences of tuplespace operation calls is exemplified through
the In-out MEP described as part of the WSDL 2.0 specification [6] and the

Facilitating Complex WS Interactions through a Tuplespace Binding 279

out in

outin
Response/

Fault

Request
Service

Requester
Service
Provider

(a) In-out MEP

Service
P id 1

Response 1

out

in Provider 1

out

Request

Service

espo se

Response 2

Service
Requester

in rd

rd

in

in

Provider 2
Response 2

out

(b) Request-for-bid MEP

Fig. 1. Web service MEPs mapped to Tuplespace operations

custom Request-for-bid MEP that leverages the advanced functionality provided
by the tuplespace transport.

The In-out MEP as shown in Figure 1(a) comprises two message exchanges.
First, the service requester sends a request message to the service provider. The
service requester addresses the service provider either directly using the
WS-Addressing Destination property which is propagated to the tuple level as
the Service name property or indirectly using the Action property. This informa-
tion is either extracted from the WSDL description of the Web service to be ad-
dressed or exchanged via out-of-band mechanisms and defined by the Web service
requester. The request message is stored in the tuplespace by the service requester
using the out operation and retrieved by the service provider using a blocking in
operation. While certain tuplespace implementations such as JavaSpaces support
asynchronous notifications as an alternative to blocking and non-blocking tuple
consumption operations, a presentation of the message exchange patterns which
makes use of these is left out for the sake of simplicity. The template used by the
service provider to retrieve request messages matches on the Service name and the
Action property of the request message. The destructive consumption operation
(in) is used rather than its non-destructive variant (rd), since the message should
be delivered to the service provider only once. When the request message has
been processed by the service provider, it constructs a corresponding response or
fault message by extracting the Message ID information (and the Reply Endpoint
WS-Addressing header if found in the SOAP message encapsulated in the request
tuple) from the request message. The Correlation ID property of the response
message is set to the Message ID of the request message to relate the response
message to the original request message and the Relationship type property is set
to the URI representing a response message in a request-response interaction. The
Web service provider stores the created response (or fault) message encapsulated
in the content field of the response tuple in the tuplespace using the out opera-
tion. The service requester retrieves a response message for its original request
message by issuing a blocking in operation, waiting for a message that contains
the necessary correlation information that identifies the message as a response to
the client’s original request message.

The Request-for-bid MEP as shown in Figure 1(b) is an example for a complex
Web service MEP that can be implemented effiently on top of a tuplespace. It
is a composite pattern that consists of a One-to-many interaction and multiple

280 D. Wutke, D. Martin, and F. Leymann

In-out interactions. First, as part of the one-to-many interaction, potentially
multiple service providers non-destructively consume a request message (rd);
each service provider processes the request message and evaluates whether to
send a corresponding response message to the service requester. If a service
provider decides to respond to the request message, it acts as described in the
In-out pattern. The MEP is terminated by the service requester by destructively
retrieving (in) the request message from the tuplespace.

5 Conclusions

In this paper, we have motivated and presented a SOAP Web service binding for
a tuplespace transport. We have payed special attention to pointing out which
properties of tuplespaces motivate their use as a Web service transport. Further-
more with the example of the In-out and Request-for-bid MEPs, we have demon-
strated the suitability of the presented transport to efficiently implement both
the standard Web service message exchange patterns described in the WSDL
2.0 specification, as well as custom, more complex message exchange patterns.
A more extensive description of the binding, further MEPs and a prototypical
implementation of the proposed Web service tuplespace binding based on the
JavaSpaces interface by SUN Microsystems is available in [8].

References

1. Gudgin, M., Hadley, M., Moreau, J.J.: SOAP Version 1.2 Part 1: Messaging Frame-
work. W3C Recommendation April 27, 2007 (2007)

2. Gelernter, D.: Generative Communication in Linda. ACM Transactions on Program-
ming Languages and Systems 7(1), 80–112 (1985)

3. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,
T.: RFC 2616: Hypertext Transfer Protocol HTTP/1.1 (June 1999)

4. Martin, D., Wutke, D., Scheibler, T., Leymann, F.: An EAI Pattern-Based Com-
parison of Spaces and Messaging. In: Proc. of EDOC 2007 (2007)

5. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces Principles, Patterns, and Practice.
Pearson Education, London (1999)

6. Chinnici, R., Gudgin, M., Moreau, J.J., Schlimmer, J., Weerawarana, S.: Web Ser-
vices Description Language (WSDL) Version 2.0 Part 1: Core Language. W3C Work-
ing Draft 26 (2004)

7. Gudgin, M., Hadley, M., Rogers, T.: Web Services Addressing 1.0 - Core. W3C
Recommendation (May 2006)

8. Schwind, A.: Space-Based Web Services: Konzepte und prototypische Implemen-
tierung mit Linda-Spaces. Master Thesis, DIP-2692, Universität Stuttgart, Fakultät
Informatik, Elektrotechnik und Informationstechnik, Germany (December 2007)

A Comprehensive Context Modeling Framework

for Pervasive Computing Systems

Roland Reichle1, Michael Wagner1, Mohammad Ullah Khan1,
Kurt Geihs1, Jorge Lorenzo2, Massimo Valla3, Cristina Fra3,

Nearchos Paspallis4, and George A. Papadopoulos4

1 University of Kassel, Distributed Systems Group
{wagner,reichle,khan,geihs}@vs.uni-kassel.de

2 Telefónica Investigación y Desarrollo
jorgelg@tid.es

3 Telecom Italia Lab
{massimo.valla,christina.fra}@telecomitalia.it

4 Department of Computer Science, University of Cyprus
{nearchos,george}@cs.ucy.ac.cy

Abstract. Context management in pervasive computing environments
must reflect the specific characteristics of these environments, e.g. distri-
bution, mobility, resource-constrained devices, or heterogeneity of con-
text sources. Although a number of context models have been presented
in the literature, none of them supports all of these requirements to a
sufficient extent at the same time. In this paper, we present a compre-
hensive and integrated approach for context modeling in pervasive com-
puting environments. It combines the advantages of existing approaches
and addresses the need for supporting effective software development.
The proposed context model follows an ontology-based approach and
has three layers of abstraction, i.e. conceptual layer, exchange layer, and
functional layer. This layered approach facilitates a model-driven devel-
opment of context-aware applications. Throughout the paper we compare
our solution with the related work in order to clearly demonstrate why
we needed to develop a new context management framework and where
we have adopted existing ideas.

Keywords: Context Awareness, Context Modeling, Ontology, Model-
Driven Development, Pervasive Computing.

1 Introduction

In recent years, context awareness has attracted a lot of attention, especially
in the realms of mobile and pervasive computing. Context-aware applications
are capable of monitoring and exploiting information about external operating
conditions. Typically, such systems are also self-adaptive, in the sense that they
can dynamically adapt as a response to changes in the execution context. Au-
tomating the development of such systems is an important challenge.

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 281–295, 2008.
c© IFIP International Federation for Information Processing 2008

282 R. Reichle et al.

A context model provides an unambiguous definition of the context artifacts,
their representations, semantics and usage. It takes into account the general
characteristics of context information, such as its temporal nature, ambiguity,
impreciseness, incompleteness and privacy. Furthermore, a context model must
also address special requirements of pervasive computing environments like dis-
tribution, mobility, heterogeneity of context sources and resource-constrained de-
vices. Often, pervasive applications require high-level context information that is
derived from low-level context values. Therefore, support for automatic context
reasoning has to be provided as well.

As it will be shown throughout this paper, existing context modeling ap-
proaches address a sub-set of these challenges only, or cover some of them only
to a limited extent. Moreover, most of them view context modeling either from
a pure conceptual or a pure functional perspective. However, when engineering
context-aware systems, a software developer needs to deal with many aspects at
the same time, e.g. define the semantics and relations between context elements
at a conceptual view, realize the information exchange between heterogeneous
nodes, and provide the concrete implementation of the context management
functionality at a specific node.

The main contribution of this paper is a new comprehensive and integrated
context modeling approach that is based on a new context ontology and three
layers of abstraction: conceptual, exchange and functional. These three layers
cover the identified requirements of context management in pervasive computing
environments and, at the same time, facilitate the analysis and design of context-
aware applications as part of a comprehensive, model-driven software engineering
process. The presented context model is a result of a research EC IST project
called Self-Adapting Applications for Mobile Users in Ubiquitous Computing En-
vironments (MUSIC) [3]. The goal of MUSIC is to develop a comprehensive
open-source computing infrastructure and an associated software development
methodology that facilitate the development of self-adapting, context-aware ap-
plications in ubiquitous and pervasive computing environments.

The rest of this paper is organized as follows: Section 2 studies requirements
for context modeling in pervasive computing environments, while Section 3 dis-
cusses existing approaches. The MUSIC context model is described in Section 4,
and discussed in Section 5. Finally, Section 6 presents our conclusions and points
to future work.

2 Requirements

This section identifies requirements for a context model that aims to ease the
development of context-aware applications in mobile and pervasive computing
environments. A comprehensive list of requirements has been derived through
a process where a set of case studies featuring both real (commercial) and fic-
tional scenarios were studied and evaluated in the scope of mobile and pervasive
computing [3]. The requirements identified from the case studies are:

A Comprehensive Context Modeling Framework 283

– Ease of development: While at a conceptual level modeling the semantics
and the relations between context information is very important, the run-
time representation of the context data must aim for efficiency. Appropriate
development support must be provided to the software developers to ease
their tasks considering the whole development process and incorporating all
views and aspects. In this respect, Model-Driven Development (MDD) is
favored.

– Considering the characteristics of mobile and pervasive computing environ-
ments: Mobile and pervasive computing environments imply further complex-
ity as they are characterized by distribution, heterogeneity, unpredictability,
unreliable communication links, etc. Furthermore, the limited capabilities of
mobile devices, e.g. in respect to processing power, memory and energy con-
sumption, have to be taken into account.

– Need for machine-interpretable representation of context information: A typ-
ical approach to tackle heterogeneity and to provide a machine-interpretable
representation of context information is the use of semantic annotations.
They are attached to the actual context data to enable automatic exploita-
tion and transformation of information in distributed context sharing scenar-
ios. Furthermore, they can be utilized to enable automatic context reasoning.

– Dealing with special context properties: Unlike data in conventional database
systems, context data is characterized by properties such as incompleteness,
ambiguity, uncertainty, and temporal nature.

– Dealing with context information partitioning: In adaptive systems, sharing
of context information is a natural requirement. However, because of the na-
ture of mobile and ubiquitous computing, it is possible that the nodes carry-
ing the context information are partitioned. The context models should cope
with such circumstances and enable the merging of the data when needed.

– Evolution and extensibility: Context models should not be monolithic, but
rather be flexible and extensible. New applications and possibly new context
nodes shall be allowed to enter the system. As the applications and their
context needs evolve, so should the context model.

This list describes the requirements that originate from our chosen scenarios. As
they are not intended to focus on a small number of rather specific applications,
but more on pervasive applications in general, they are naturally quite high-level.
Although we believe that the list is rather comprehensive for pervasive applica-
tions, we do not claim completeness. Other applications may have different or
additional requirements. In addition, more general requirements apply to con-
text modeling, just like they apply to software systems in general. These include
platform independence, privacy and security issues, support for automatic test
execution, logging, simulated operation and visualization of the system state.

3 Discussion of Existing Context Models

In search for an existing context model that would satisfy all of the above re-
quirements, we carefully examined the related work in this research field. Our

284 R. Reichle et al.

investigations revealed that research in the area of context modeling is well
established and many ideas have been developed for addressing the above re-
quirements individually.

3.1 Existing Approaches on Context Modeling

In order to provide application dependent context information through a con-
text framework, a uniform way of representing and sharing context is required.
Strang and Linnhoff-Popien [16] evaluate the most relevant context approaches
based on the data structures used for representing and exchanging context infor-
mation: key-value pair, markup scheme, graphical, object oriented, logic based
and ontology based models. According to their evaluation, the most promising
assets for context modeling for ubiquitous computing environments are found
in ontology based models. In these models, the semantic context information
is represented using one of the ontology markup languages, for example OWL
(Web Ontology Language) [10]. We share their opinion and consider ontologies
as an appropriate way to deal with the heterogeneity implied by ubiquitous
computing environments. An ontology defines a common vocabulary to share
context information among devices, services and users. This makes it possible to
reason about various context types, thanks to machine-interpretable definitions
on basic concepts in the domain and relations among them.

There are several projects that also apply ontologies as a central concept for
modeling context information. For instance, Chen et al. [1] defined a context
ontology based on OWL to support ubiquitous agents in their Context Broker
Architecture (CoBrA). Their approach targets home area intelligent environ-
ments and applies sensor information detection and context awareness as a way
of dealing with users’ activities, intentions and movements between different
home areas.

Ranganathan et al. [13] developed a middleware for context awareness and
semantic interoperability in which they represented the context ontology in
DAML+OIL [8]. One of the main shortcomings of this approach is that it does
not deal with the specialized context characteristics, such as incompleteness, and
that its extensibility is limited.

Context-Driven Adaptation of Mobile Services (CoDAMoS) [12] defines a
generic ontology to model context in Ambient Intelligence infrastructures that
suits very well the requirements of mobile computing. This ontology is based on
four general entities. (1) The user is the central entity, including the user’s pro-
file, preferences, mood and current activity. The rest of the entities should adapt
to the user, not vice versa. (2) The environment in which the user interacts,
including information such as temperature and lighting. (3) The platform that
describes the hardware and software of a device, including device resources such
as memory and bandwidth. (4) The service that provides specific functionality
to the user.

The Service-Oriented Context-Aware Middleware (SOCAM) [4] [17], is an
architecture for building context-aware services based on a two-level context
model. This middleware acquires context information from different sources and

A Comprehensive Context Modeling Framework 285

interprets it. The context ontology is divided into a two-level hierarchy, dis-
tinguishing between common and specific context information. The upper level
describes global concepts of the ontology and captures general knowledge about
location, type of entity, person or activity. On the other hand, the lower level
is divided into several pervasive computing sub-domains, each one of which de-
fines specific details and properties for each scenario. Depending on the situation
and the available devices, an appropriate sub-domain is selected from the lower
level. When environment changes are detected, the lower level ontology can be
dynamically plugged into and unplugged from the upper ontology, thus dynam-
ically changing this association. This mechanism appears to be very reasonable
also with respect to resource limited devices. An ontology resulting from the
extension of the top-level ontology with a domain-specific ontology can be kept
quite small in comparison with a single huge ontology capturing all potentially
involved concepts.

Strang et al. [15] describe a context modeling approach using ontologies as a
formal foundation. They introduce their Aspect-Scale-Context (ASC) model and
show how it is related to other models. A Context Ontology Language (CoOL)
is derived from the model, which is used to enable context-awareness and con-
textual interoperability during service discovery and execution in a distributed
architecture. One highlight of the ASC model is that it explicitly addresses
heterogeneity with regard to different representations (called scales) of context
information.

Apart from the ontology-based approaches, there are several other projects
on context modeling that fulfill several of the requirements that were stated in
the previous section. One example is CML from Henricksen and Indulska [6]
[7]. They also incorporate ontologies to address particular aspects like privacy.
The formal foundation of their context modeling approach is an enhancement
of the ORM language. With the situation abstraction they provide elaborate
support for reasoning on context information. Their context model can also deal
with special characteristics of context information, such as temporal nature,
incompleteness, ambiguity, etc. Additionally, the context modeling approach is
complemented by a model-driven development approach (which provides an API
for the application developer) and a methodology for the development of context-
aware application [7]. In this approach, context information is addressed from
three levels, i.e. conceptual, management and implementation level.

The Comprehensive Structured Context Profiles (CSCP) [5] was developed
based on RDF to represent context by means of session profiles. However, this
approach does not deal with all our required context characteristics, like the
temporal nature of context.

In [11], Hoenle et al. highlight the benefits of integrating meta-data into the
context model. They argue, that meta-data facilitate important aspects like the
assessment of the quality of context information, sensor fusion and data cleansing
and provide more flexibility when dealing with context information. In their
approach meta-data are associated to context information at object level as well
as at attribute level.

286 R. Reichle et al.

3.2 Why Another Context Model?

If we look at our requirements and at the approaches described above, the first
impression is that it should not be a difficult task to find an existing context
model that is suitable for our purposes. However, none of the examined ap-
proaches supports all of our requirements to a sufficient extent. Ease of develop-
ment using MDA, as one of our key requirements, is only addressed sufficiently
by Henricksen and Indulska, but their model is not based on ontologies as the pri-
mary modeling concept. Similar to many related works, we consider the concepts
of ontologies necessary to establish a common vocabulary in a heterogeneous per-
vasive computing environment. Such an environment also implies heterogeneous
representations of context information. This is also not explicitly addressed by
CML but by the ASC model from Strang et al. However, their approach does
not provide such an elaborate development support based on MDA as the CML
project.

As we could not find an approach, that fulfilled all of our requirements, our
next step was to figure out, if one approach can easily be extended to cover all
the aspects. Having in mind that CML already utilizes ontologies for issues like
privacy we investigated the feasibility of incorporating ontologies as primary
modeling concept in CML. But we quickly came to the conclusion, that this
would require too much effort, as it would mean to completely replace the ORM
and its extensions or to establish a mapping from an ontology based approach to
the ORM. Furthermore, even if we had established such a mapping, the problem
of heterogeneous representations would still remain unsolved.

The idea to complement the ASC model with MDD support appeared to be
quite promising, in particular when considering, that CoOl was also designed to
facilitate the mapping to other context models. Problems with the ASC model
were found in small details. In our view context information should character-
ize an entity of the world (e.g. laptop, device, user, etc) with a certain type or
scope of information (e. g. location, current situation, battery status, etc) in
a certain representation (e.g. GPS coordinates in the case of location). In our
terminology a context scope is a kind of context information type. Therefore,
the three concepts entity, type and representation should be clearly separated.
In the ASC model, the type of information (called aspect) is only referred in-
directly through the scales, which correspond to a certain representation in our
terminology. We faced problems with this indirection when building taxonomies
of context information types and corresponding taxonomies of representations.
Clearly separated concepts not only facilitate building taxonomies, they also ease
the automatic model-based generation of context interpreters that are responsi-
ble for one context information type and can deal with several representations.

Based on this analysis, we saw the need to design a new context modeling
approach that utilizes the advantages and most promising features of the existing
works in order to develop a comprehensive integrated approach. As can also be
seen from the considerations above, combining the different concepts is not at
all a trivial task.

A Comprehensive Context Modeling Framework 287

4 The MUSIC Context Model

This section describes the context model of the MUSIC project. In the first
subsection we describe the general structure of the new context model. Then
we introduce the different layers and show in the last subsection how to use our
approach in the Model Driven Development.

4.1 Three Layers of Abstraction

We identify three basic layers of abstraction that correspond to the three main
phases of context management: the conceptual layer, the exchange layer and the
functional layer. The conceptual layer aims to be leveraged by the developers and
to be exploited in the model-driven development approach. This layer enables
the definition of context artifacts such as elements, scopes, entities and represen-
tations based on standard specification languages like UML and OWL [10]. The
exchange layer aims to be utilized for interoperability between devices. At this
layer, the context information can be expressed in any adequate representation,
such as XML, JSON (JavaScript Object Notation) [9] or simply CSV (Comma
Separated Values). Finally, the functional layer refers to the actual implemen-
tation of the context model representation and the internal mechanisms used
in the different nodes. This model can be object-based, but it does not neces-
sarily need to be interoperable as it is platform-specific and as different devices
might use different implementations of it, using for example Java and .NET. The
main objective of this layer is efficiency, both in terms of processing speed and
resource consumption. This paper focuses on the conceptual and the exchange
layers of the proposed hierarchy. Figure 1 illustrates how these concepts fit into
these three layers.

Fig. 1. The three layers of the MUSIC context model

288 R. Reichle et al.

For our context model, we decided to incorporate the concept of ontologies
in the conceptual layer of the context model for several reasons. (1) Ontologies
facilitate the establishment of a common understanding of the semantics of con-
text elements and their associated metadata and therefore boost interoperability.
(2) Similar to the ASC model proposed by Strang et al. [15], ontologies can also
be used to define the internal structure of context data, thus allowing several
representations, their interpretation and automatic conversions between them.
(3) By incorporating ontologies, it is possible to model a wide range of relation-
ships between context elements, which is essential for a flexible context reasoning
approach. Also, a context meta-model is defined to facilitate automatic trans-
formation between the different layers of the context modeling approach and to
define basic guidelines for modeling the ontology.

The ontology is described in OWL and the context meta-model is specified in
UML. Together they form the conceptual layer of the MUSIC context modeling
approach. The context meta-model defines the general structure of context in-
formation and shows how concepts and/or individuals/entities specified in the
ontology are referenced. In turn, as the context meta-model defines a general rep-
resentation of context information it can also be considered as a kind of schema
for defining the concrete representations of context elements in the ontology.

At the exchange layer, an instance of the conceptual model is represented in
XML (or alternatively in JSON or CSV). The representation in XML is quite
straightforward, as it is the common way to represent individuals of the ontology
(which can be seen as context information).

The functional layer also defines a set of data structures for storing the context
information. As the internal structure of context elements is specified in the on-
tology, it is possible to automatically generate the corresponding data structures
for specific platforms along with appropriate serialization and de-serialization
methods. Thus, the data structures can easily be filled with the information rep-
resented at the exchange layer without much overhead spent for interpretation.
It is also worth noting here, that the information concerning the ontology is only
transferred once or on demand. All these features take into account the quite
limited resources of mobile devices in pervasive computing environments.

4.2 The Conceptual Layer of the MUSIC Context Model

As depicted in Figure 1 the MUSIC context model is composed of an ontology
and a metamodel at the conceptual layer, which is described in the following.

The MUSIC Context Meta-Model. Figure 2 illustrates the proposed Con-
text Meta-model. Context information is abstracted by context elements which
provide information about context entities and context scopes and that can be
composed of other context elements and can contain a number of context values.
For example, a context element’s network connections in a device’s context can
contain the elements Wi-Fi and Bluetooth, and both elements can have the val-
ues Cost and Bandwidth. Context elements are associated to context scopes that
group context values belonging to the same context domain. For example, the

A Comprehensive Context Modeling Framework 289

scope Position groups context values like: Longitude, Latitude and Accuracy.
The context entities refer to concrete entities in the world, for example User,
Device, etc.

Fig. 2. The MUSIC Context Meta-Model

Metadata can be associated with context elements and context values. Here we
distinguish between predefined (or suggested) metadata and user-specific meta-
data. The proposed model includes the predefined metadata: name, entity, scope,
representation, source and sourceType. The name serves as an identifier. Scope,
entity and representation refer to the MUSIC context ontology; scope refers to
the semantic concept that groups context values belonging to the same context
domain and characterizes the context information, e.g. deviceStatus ; entity refers
to the concrete individual to which the context information is associated, e.g.
“My Windows XP Laptop”. The representation refers to the internal represen-
tation of the context information which is also specified in the ontology. With
these types of metadata, it is specified that a context element characterizes the
semantic concept scope for the individual entity and its internal structure cor-
responds to representation. The source is a unique identifier of the component
that provides the context information (e.g. a context sensor or reasoner). For
context values the suggested types of meta-data are name, scope and represen-
tation that have the same meaning as the corresponding metadata types of the
context element. In addition, it is allowed to associate user-specific metadata to
context elements and context values. In a way, these metadata can be seen as ad-
ditional context values and they are also represented in the same way. However,
in contrast to context values, metadata can be associated to context elements
and context values. Each context element, context value and metadata has a
representation. According to aspects in the ASC model described in Strang et
al. [15], each representation (in the ASC model called aspect) aggregates one
or more dimensions (scales in ASC). Each dimension corresponds to a certain
context element, context value or metadata element. A dimension itself has a
representation, which again can consist of several dimensions. With these con-
cepts, the internal structure of the context information is defined through the
context element.

290 R. Reichle et al.

The MUSIC Context Ontology. This section introduces the MUSIC context
ontology through an example. This example does not claim completeness but
rather aims at showing the general modeling concepts and illustrating how the
conceptual layer, which contains the context meta-model, is complemented by an
ontology. In order to provide an extensible ontology that is well-structured and
easy to understand, we introduce a two-level hierarchy for the ontology, similar
to SOCAM. Here, we introduce the structure of the top-level ontology.

The context meta-model refers to the ontology with regard to three aspects:
the context scope that is characterized by the context element, the type of the
particular individual/entity of the characterized scope and the representation
of the context information. These different aspects have to be covered while
modeling the ontology.

Figure 3 presents the classes corresponding to the semantic concepts we would
like to characterize through context information/context elements in our context
management system. This figure only includes a small number of classes, such
as for example the concept DateTime which is a subclass of BasicConcepts. As
depicted in the figure, the most important relation is that each Concept has
a Representation. The class Concept is not only used to classify EntityTypes,
ContextScopes and BasicConcepts. Additionally, some further relations between
these classes and its subclasses can be defined (e.g. isLocatedIn). These relations
can be used for ontology reasoning.

As a second part of the ontology, the representations for the concepts must
also be specified. As depicted in Figure 3 a concept can have one ore more
representations. By allowing representing certain context information in several
ways, we do not only face the challenge of heterogeneous context sensors for a
certain semantic concept, but we also ease the merging of ontologies, at least
to a certain extent. If an ontology matches a second one with regards to the
classes for the concepts and their relation, and only differ in the representation
of context information, the second ontology can be integrated in the first one in
a straight forward manner.

Fig. 3. The main structure of the MUSIC Context Ontology

A Comprehensive Context Modeling Framework 291

As we envisage explicit support for heterogeneous representations of context
scopes, we also allow the definition of Inter-Representation-Operations (IRO)
as in the ASC model [15]. This concept is a further step in supporting context
providers and consumers in a heterogeneous environment. It allows to ask for
context data by a context consumer by describing a certain scope, characterizing
a certain entity of this concept and having a certain representation. If this does
not match the representation provided by the context sensor, an appropriate one
can be computed with the corresponding IRO.

4.3 Model-Driven Development

As already discussed in the previous section, we do not want to provide only a
new context model, but rather an integrated approach for context modeling, rea-
soning and querying together with support for application development. Thus,
we use our context model also as a key ingredient in the model-driven application
development. In general, context-aware software is developed using traditional
programming methods and models, and the use of context information is im-
plemented directly into the source code. Even if the logic used to access and
process context information and to react to context changes is isolated within
special components, the applications are still difficult to maintain, as source code
must be modified to support additional classes of behavior and context. To fa-
cilitate the application development process, we use the context ontology also
at design-time to support the MDD of context-aware applications. The MDD
methodology exploits mainly the conceptual layer, where the context artifacts
(elements, sensors, etc) are defined based on standard specification languages,
like UML and OWL. From the high-level specifications provided at this layer,
appropriate data representations and data structures for the other layers can
be automatically generated. It is even possible to automatically provide serial-
ization and de-serialization methods to be leveraged at the exchange layer and
to incorporate IROs for converting between different representations. Addition-
ally, we provide a software development methodology for adaptive context-aware
applications in ubiquitous computing environments. Further information about
this methodology can be found in [3]. As depicted in the example in Figure 3, the
representation of a concept embodies also the main structure of the context infor-
mation. This structure can be used to automatically generate the corresponding
data-structure. For data1 in the example in Figure 3, the data-structure in Java
would be generated as following:

Class DateTimeRep1 implements Serializable{
private int day = null;
private string month = null;
private int year = null;

... }
Date1 = new DateTimeRep1(27, "September", 2007);

Furthermore, both the constructors and the getter/setter methods can be auto-
matically generated.

292 R. Reichle et al.

DateTimeRep1(){...}
...
DateTimeRep(int d, String m, int y){

this.day = d;
this.month = m;
this.year = y;}

As aforementioned we use the concept of IRO to transfer context information
from one representation to another (in our example from DateTimeRep1 to
DateTimeRep2). The skeletons of the IROs can also be generated automatically:

static DateTimeRep1 IRO_DTRep2_To_DTp1(DateTimeRep2 date2){
DateTimeRep1 date1 = new DateTomeRep1();
//TODO for Developer: Fill out the missing calculations and
check the variables defined and assigned above
return date1;}

Additionally, it is even possible to automatically provide serialization and de-
serialization methods to be leveraged at the exchange layer. This means that we
can automatically generate the necessary methods to send or receive the data via
the exchange layer in the different formats (i.e. XML). Here we use also the IRO.
A context sensor which provides the context information in a certain represen-
tation, uses its serialization method to submit this data via the exchange layer.
Then the context consumer uses the de-serialization method to insert this data
into his data structure. In this method, we check if the information corresponds
to the requested representation, if not then automatically a corresponding IRO
is called. Here we have to highlight, that the application developer does not need
to worry about this process of serialization/de-serialization and conversion. The
application developer just uses the generated getter-/setter-methods to access
to data in the data structure. As part of our comprehensive approach for con-
text modeling, reasoning and querying, we provide also an appropriate Context
Query Language (CQL), which is described in Reichle et al. [14] in more details.
This CQL will also be used for the MDD as we can automatically generate the
code corresponding to a static query.

5 Discussion

In this paper, apart from other important requirements we emphasize the need
of using ontologies to establish a common vocabulary of concepts and to explic-
itly address heterogeneous representations of context information in pervasive
computing environments. At the same time, we highlight the need for software
development support that allows developers to easily construct context-aware
and self-adaptive systems. A representative set of related context modeling ap-
proaches is described in Section 3. We have argued that none of these approaches
fulfills all of our requirements to a sufficient extent at the same time. Therefore,
our proposal extends the state of the art, by combining the most promising
features of existing approaches to a context model that is comprehensive and

A Comprehensive Context Modeling Framework 293

fulfills important requirements arising in pervasive computing environments. As
it is already shown in Section 3, the task of integrating the different ideas was
challenging, as some problems were obvious, while others were visible only when
focusing on specific details.

We have introduced a two-level hierarchy for the ontology. Similar to SO-
CAM, we distinguish between a top-level ontology capturing global knowledge
and general concepts, and the domain-specific extensions. By allowing to inte-
grate domain- or application-specific extensions our context modeling approach
is not monolithic but evolvable for new applications entering the system. In or-
der to cope with heterogeneous representations we define the internal structure
of context information along with Inter-Representation-Operations in the on-
tology, similar to the ASC model [15]. In addition to establishing a common
vocabulary for context information through an ontology, the concept of Inter-
Representation-Operations further boosts interoperability. Therefore, our ap-
proach explicitly addresses the requirements arising from a heterogeneous com-
puting environment. Metadata can be associated to context elements and also
to context values similar to what is proposed by Hoenle et al. [11], which comes
as an appropriate mean to deal with the special properties of context informa-
tion and also facilitates merging of context information when nodes have been
partitioned. Last but not least, we incorporate some ideas from Henricksen and
Indulska [6] [7] in order to ease the development task by employing an MDD
approach. In summary, our new context model provides:

– Support of all three context management layers (conceptual, exchange and
functional layer). The exchange layer and the corresponding links to the
conceptual and functional layers are introduced to face the challenges that
arise from a distributed context sharing scenario in heterogeneous computing
environments.

– Explicitly addressing MDD by using the ontology, not only to introduce a
general vocabulary and relationships between context elements, but also to
define different representations which comprise information about the used
data structures.

– An ontology that is divided into two corresponding hierarchies: concepts and
representations. The hierarchy of concepts contains the general vocabulary
and the relations between the elements, whereas the hierarchy of represen-
tations is used to define the internal structure of context elements. With
this division, it is possible to use only the light-weight concepts hierarchy
for context reasoning while omitting large parts of the ontology that only
contain the representations.

Our new context model is based on concepts that have already been proved vi-
able. However, only a simplified version of the context model has been prototyped
so far. It is currently used by the pilot service developers in the MUSIC project
[3]. They will provide feedback from the implementation phase of the pilot ap-
plications. This feedback will then be leveraged to improve and fine-tune our
approach. Although we have not yet implemented the complete context man-
agement system, we are very confident that it can be done. The first experiences

294 R. Reichle et al.

with the new approach are quite promising and it seems to be applicable and
sufficient for all our case studies.

However, we are aware that some issues deserve further attention. One issue
for example might be the resource limitations of mobile devices that are currently
available.Althoughwekeep the ontology as small as possible, utilizing the two-level
approach, ontology reasoning at run-time remains a resource consuming task, but
is unavoidable to some extent. Furthermore, the classes and data-structures that
are generated at design-time can be loaded at run-time, and furthermore, they pro-
vide serialization and de-serialization methods. Additionally, they allow interpre-
tation of context information and the conversionbetweendifferent representations.
Thus, we provide a convenient and efficient method for dealing with heterogeneous
context information, although these advantages incur additional memory require-
ments, which could be a serious problem on devices with limited resources. Fur-
thermore, some problems could also arise from the plugging mechanisms used for
the ontology. In many cases, extending ontologies through other ontologies also
implies ontology merging to some extent, which is a really challenging task.

6 Conclusions and Future Work

In this paper, we have introduced a comprehensive context modeling framework
for pervasive computing. We have adopted a three-layer architecture, featuring
a conceptual, an exchange and a functional layer. In the conceptual layer, an
ontology-based model is used, mainly at design-time, to enable model-driven de-
velopment of context aware applications. The same context model is also used
at run-time for the representation and the exchange of context information in
the functional and exchange layers. We have also shown how we extend the state
of the art by overcoming some of the limitations of existing approaches and by
working towards a comprehensive solution which meets a set of preset require-
ments. In our on-going and future work, we endeavor to strengthen these results,
first by evaluating the potential drawbacks as discussed in Section 5. Further-
more, we will extend our prototype implementation to completely support our
approach. The prototype implementation will be used by the pilot application
developers in the MUSIC project. Their feedback will then be leveraged to fur-
ther improve and fine-tune our approach.

Acknowledgments. The authors of this paper would like to thank their part-
ners in the MUSIC-IST project and acknowledge the partial financial support
given to this research by the European Union (6th Framework Programme, con-
tract number 35166).

References

1. Chen, H., Finin, T.: An Ontology for a Context Aware Pervasive Computing En-
vironment. In: IJCAI workshop on ontologies and distributed systems, Acapulco
MX (August 2003)

A Comprehensive Context Modeling Framework 295

2. European EC-FP6 project MADAM (Mobility and ADaptation enAbling Middle-
ware), http://www.intermedia.uio.no/confluence/display/madam

3. European IST-FP6 project MUSIC (Self-adapting applications for Mobile User. In:
ubiquitous Computing environments), http://ist-music.eu

4. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An Ontology-based Context Model
in Intelligent Environments. In: Proceedings of communication Networks and Dis-
tributed Systems Modeling and Simulation Conference, San Diego, California,
USA, pp. 270–275 (2004)

5. Held, A., Buchholz, S., Schill, A.: Modeling of Context Information for Pervasive
Computing Applications. In: Proceedings of the 6th World Multiconference on
Systemics, Cybernetics and Informatics (SCI), Orlando (July 2002)

6. Henricksen, K., Indulska, J.: A Software Engineering Framework for Context-
Aware Pervasive Computing. In: Second IEEE International Conference on Per-
vasive Computing and Communications, pp. 77–86. IEEE Computer Society, Los
Alamitos (2004)

7. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing appli-
cations: Models and approach. Journal of Pervasive and Mobile Computing 2(1),
37–64 (2006)

8. Horrocks, I.: DAML+OIL: a Reason-able Web Ontology Language. In: Chaudhri,
A.B., Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490,
Springer, Heidelberg (2002)

9. JSON (JavaScript Object Notation), http://www.json.org/
10. OWL Web Ontology Language, http://www.w3.org/TR/owl-features/
11. Hoenle, N., Kaeppeler, U., Nicklas, D., Schwarz, T.: Benefits Of Integrating Meta

Data Into A Context Model. In: Proceedings of 2nd IEEE PerCom Workshop on
Context Modeling and Reasoning (CoMoRea), Hawaii, March 12 (2005)

12. Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx,
T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible
context ontology for ambient intelligence. In: Markopoulos, P., Eggen, B., Aarts, E.,
Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 148–159. Springer, Heidelberg
(2004)

13. Ranganathan, A., Campbell, R.H.: A Middleware for Context-Aware Agents in
Ubiquitous Computing Environments. In: Endler, M., Schmidt, D.C. (eds.) Mid-
dleware 2003. LNCS, vol. 2672, pp. 143–161. Springer, Heidelberg (2003)

14. Reichle, R., Wagner, M., Khan, M.U., Geihs, K., Valla, M., Fra, C., Paspallis, N.,
Papadopoulos, G.A.: A Context Query Language for Pervasive Computing Envi-
ronments. In: Proceedings of 5th IEEE Workshop on Context Modeling and Rea-
soning (CoMoRea 2008) in conjunction with the 6th IEEE International Conference
on Pervasive Computing and Communication (PerCom), pp. 434–440 (2008)

15. Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL - A Context Ontology Language
to enable Contextual Interoperability. In: Stefani, J.-B., Demeure, I., Hagimont, D.
(eds.) DAIS 2003. LNCS, vol. 2893, pp. 236–247. Springer, Heidelberg (2003)

16. Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. In: 1st International
Workshop on Advanced Context Modeling, Reasoning And Management during
UbiComp 2004 (2004)

17. Wang, X.H., Gu, T., Zhang, D.Q., Pung, H.K.: Ontology Based Context Modeling
and Reasoning using OWL. In: Proceedings of Workshop on Context Modeling and
Reasoning (CoMoRea 2004), Orlando, Florida, USA (March 2004)

http://www.intermedia.uio.no/confluence/display/madam
http://ist-music.eu
http://www.json.org/
http://www.w3.org/TR/owl-features/

Rapid Prototyping of Routing Protocols

with Evolving Tuples

Drew Stovall and Christine Julien

Mobile and Pervasive Computing Group
University of Texas at Austin, Austin TX 78712, USA

{dstovall,c.julien}@mail.utexas.edu

Abstract. Developing software for dynamic pervasive computing net-
works can be an intimidating prospect. While much research has focused
on developing and describing algorithms and protocols for these envi-
ronments, the process of deploying these technologies is far from mature
or streamlined. Furthermore, the heterogeneity of pervasive computing
platforms can make the deployment task unapproachable. In this paper,
we describe the evolving tuples model and demonstrate how a simple
protocol can be quickly and easily developed. Since the evolving tuples
infrastructure serves as a unifying base across heterogeneous platforms,
the resulting implementation inherently supports cross-platform deploy-
ment, a common scenario for pervasive computing.

1 Introduction

Since the introduction of ubiquitous computing [14], much research has studied
the coordination and collaboration of devices embedded in environments. As
predicted, sensing and computing devices are been developed and deployed, and
we are continually developing smaller, better, and longer lasting versions. Our
rooms, halls, cars, and even parks will eventually be augmented with a plethora
of devices to provide and consume all sorts of information.

However, the heterogeneity of devices can impede the creation and main-
tenance of applications. The variety of platforms to be supported requires an
enormous number of protocol and application implementations. This inevitably
leads to environments of incompatible, incomplete, and proprietary systems. Ad-
ditionally, physical access to the devices to update hardware and software leads
to massive efforts, making them impractical if not impossible.

Once deployed, this variety of hardware and software is a stumbling block
to successful application maintenance. Small alterations to network protocols or
node behaviors can cascade into significant code changes. The work required to
recompile and redeploy new features can slow development. To address these
issues, we introduce the evolving tuples model through which developers can
make changes to protocols and applications, run different versions side-by-side,
and add features without the cost of traditional redeployment.

In this paper we present the evolving tuples model and examine its use in proto-
typing behavior for pervasive computing environments. A simple route discovery

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 296–301, 2008.
c© IFIP International Federation for Information Processing 2008

Rapid Prototyping of Routing Protocols with Evolving Tuples 297

protocol is described in detail to give a practical example of the work, showing the
simplicity of prototyping applications using the evolving tuples model.

2 Background

Originally introduced as part of the Linda [6] system, a tuple is simply an ordered
list of typed data fields. Tuples are collected in a bag-like data-structure called
a tuple space. The addition and removal of a tuple from a tuple space is atomic,
making it a natural mechanism for buffered communication between parallel
processes.

In Linda, a process removing a tuple from the tuple space provides a pattern
to which candidate tuples are compared. These patterns take the form of an
ordered sequence of actual or formal values. A tuple that matches a pattern has
the same number of fields as the pattern, equal values for any actuals, and the
same type as any formals.

While forming a simple mechanism for passing data between processes, this
design requires that data producers and consumers are maintained together.
Any change in tuple format will require a similar change in the patterns used by
existing processes. Since a pervasive computing environment typically consists
of devices that are not under the control of a single entity, we must assume
that tuple formats and tuple patterns will change independently. In our evolving
tuples, as in LighTS [1] and ELights [9], fields are tagged with names, enabling
us to decouple the tuple and pattern definitions.

Using tuple space systems, data can be effectively communicated between
processes administrated by different organizations. However, behavior must still
be specified a priori so that an application generating tuples can provide the right
data to the consumers. Evolving tuples reduce this level of coupling by directly
embedding some of the behavior we expect from nodes into the tuple itself.
Specifically, rather then pre-defining the data manipulation recipe to nodes,
evolving tuples allow tuple creators to stipulate this behavior at runtime.

3 The Evolving Tuples Model

In this section, we describe the evolving tuples model, consisting of three major
components: the tuple format, the evolution process, and the standard deploy-
ment. A formal specification of many aspects of this model can be found in [12].

3.1 Evolving Tuple Format

In addition to the name element described in the previous section, the evolving
tuples model adds a formula element to each tuple field. A field’s formula specifies
how the value is automatically updated or evolved. An evolving tuple is thus a
set of tuple fields which comprise a name, a type, a value, and a formula.

A field’s formula imparts behavior to the tuple as it passes through the net-
work. Previous to the evolving tuples framework, tuple values were either im-
mutable or altered only according to protocols already deployed to network

298 D. Stovall and C. Julien

nodes. Though it can be empty or null (�), a field’s formula is nominally an
arithmetic expression. A few simple logical functions are also provided [12].

These formulas can reference the values of peer fields by name. We also allow
expressions to access values of a dictionary-like construct called the evolution
context. The evolution context serves as a lookup table for sensor readings, con-
figuration information, and other context related to the tuple’s current location.
To access values provided by the evolution context, formulas prefix the value’s
name with “ec.” to differentiate them from references to peer fields.

3.2 Evolution

When a tuple is evolved, each of its field’s formulas are evaluated, and the existing
value is replaced with the result. Since formulas combine both the previous value
and the values provided in the evolution context, the new value is viewed as an
evolution of the field’s value. If a field count has a formula of count + 1, the
current value of the field would be incremented during an evolution.

3.3 Standard Deployment Model

The Evolving Tuples Model includes a reference design that represents the con-
ceptual flow of tuples through each node. While the details of any particular
implementation may differ, the externally observable behaviors of each should
match those of this reference design. This model contains four components: the
receive process and three tuple spaces: inbound, outbound, and application. The
model is depicted in Fig. 1.

Basic Tuple Exchange. Applica-

Fig. 1. Flow chart of receive process

tions create, initialize, and deposit
tuples into the outbound tuple space.
Since messages require a destination,
the reference model requires, at a
minimum, a destination field. The
field’s value should be initialized to
the address of a neighboring node or
to the broadcast address. A system
process monitors the outbound tuple space, removing tuples and transmitting
them to their destinations. If a transmission fails, the tuple is redeposited into the
outbound tuple space where it can be selected at a later time for another attempt.

When a host receives a tuple, it is placed in the inbound tuple space. The
Receive process removes and evolves each tuple. If, after evolution, the tuple is
destined for this node (via the destination field), a copy of the tuple is deposited
in the application tuple space. If the tuple needs to be forwarded, the Receive
process deposits a copy of the tuple in the outbound tuple space.

Broadcast and Duplicate Elimination. The use of the reserved broadcast
address (typically -1) in a tuple’s destination field designates that the tuple

Rapid Prototyping of Routing Protocols with Evolving Tuples 299

should be sent to every neighboring node. When using this address, the evolving
tuples deployment model requires the use of a unique id field in the tuple to
prevent the host from reprocessing tuples it has seen before. Because the tuple
id is simply another field in the tuple, it is possible to alter the value of this id
using the field’s formula. When a tuple’s id field is changed, it becomes a “new”
tuple which will be processed by nodes that have already processed a previous
incarnation.

4 A Routing Protocol

In this section we demonstrate how route discovery can be performed using the
evolving tuples model. In a network of interconnected nodes, a route from one
node to another can be found by flooding the network with a “route discovery
message”. If each node attaches its own address to a list of addresses in the
message, a complete hop-by-hop route will be created. When the target node
receives the message, a reply message is broadcast across the network to discover
a route back to the source. A more complete discussion of route discovery for
pervasive networks can be found in [8].

Table 1. Route Discovery Tuple

Name Value Formula
source 0 �
target 2 �
route 0 append(route, ec.node)

destination -1 if (source == ec.node, ec.node, -1)
id 0.0 if (ec.node == target, newUuid(), id)

To build a route discov-
ery tuple, we start with the
source and target fields to
hold the addresses of the
source node and the target
node respectively. No for-
mula is specified since these
are constants throughout
the process. The route field carries the accumulated route to which each in-
termediate node appends its own address (ec.node). The tuple’s destination
field is used to propagate the tuple to the next node. With one exception, the
tuple is always broadcasted and thus the value is usually assigned to the reserved
broadcast address -1. When the tuple is being evolved on the source node, we
assign the destination to the source’s address (source) to prevent it from further
propagation.

Since nodes discard tuples that contain id’s

Fig. 2. Example network

that have already been processed (to avoid du-
plicates), we must change the tuple’s id when
it arrives at the target before it is re-flooded
back to the source. We accomplish this using
a simple if statement. When the id formula
is evaluated on the target node, the value
is replaced with a new id generated by the
newUuid() function.

The original tuple deposited by the application is shown in Table 1 (field
types have been removed for brevity). In this example, the initiating application
resides on a node with address 0 and is attempting to discover a route to a node

300 D. Stovall and C. Julien

with address 2. If nodes 0, 1, and 2 are interconnected as shown in Fig. 2, the
evolution of the tuple’s values are shown in Table 2.

When the tuple in Table 1 is deposited into node 0’s outbound tuple space, it
is broadcasted to neighboring nodes (i.e., Node 1). As the tuple moves through
this simple network and is evolved, its fields’ values change.

Table 2. Tuple Values (after evolution on the node
heading the column)

Tuple Field Node 0 Node 1 Node 2 Node 1 Node 0
id 0.0 0.0 2.0 2.0 2.0

source 0 0 0 0 0
target 2 2 2 2 2
route 0 01 012 0121 01210

destination -1 -1 -1 -1 0

When the tuple is evolved
on node 1, only the route
field is changed, and the
tuple is broadcasted again.
When the tuple is evolved
in node 2, both the route
and id fields are updated.
By changing the id field,
we allow the tuple to be re-
ceived again by node 1 when node 2 broadcasts it again. Node 1 again updates
only the route field, and the tuple is passed on to node 0. Here the destination
field is set to 0 to prevent any further flooding of the tuple.

5 Related Work

Early tuple space designs [6] and implementations [2] for Linda targeted parallel
processing environments. Specifically, the atomic insertion and removal oper-
ations on tuple spaces relied on locks provided by shared memory. Lime [11]
introduced distributed tuple spaces that provided the same atomicity guaran-
tees across a truly global tuple space spanning many devices in mobile ad hoc
networks. This adaptation of tuple spaces allows for an abstract representation
of the network underlying a pervasive application but requires that tuples be de-
livered to consumers without interacting with the “lower levels” of the network.
We believe that exposing cross-layer information to tuples in our approach allows
for more powerful applications at the cost of a more complex representation.

Mobile agent systems also combine behavior with the data that traverses the
network. In an effort to provide a wide range of functionality, undue burden is
placed on either the developer or the hosts. Systems like Agilla [5] require the
developer to understand very low-level programming languages, while systems
like TOTA [10] and MARS [3] require hosts to support high-level languages
(i.e., Java). We feel that the evolving tuples model strikes a balance between
the skills required to use the system and the capabilities required of the net-
work hosts.

While rooted in different technologies, there are a number of efforts to ease
development for pervasive computing applications. Visual programming tech-
niques [13] reduce the learning curve for new developers. Other approaches [7]
provide abstraction to manage complexities. Still others address recompilation
and redeployment head on through more complex hardware [4].

Rapid Prototyping of Routing Protocols with Evolving Tuples 301

6 Conclusions and Future Work

We have presented the evolving tuples model and shown how it can be used
to implement a simple route discovery protocol. As we continue to evaluate the
model, we anticipate exposing a variety of other domains to which the evolving
tuples model is well suited. We feel that our model has the potential to make
developing pervasive computing applications more approachable and fruitful.

Acknowledgments

The authors would like to thank the Center for Excellence in Distributed Global
Environments for providing research facilities and the collaborative environment.
This research was funded in part by NSF Grant #CNS-0626777 and AFOSR
Grant #FA9550-07-1-0157. The views and conclusions herein are those of the
authors and do not necessarily reflect the views of the sponsoring agencies.

References

1. Balzarotti, D., Costa, P., Picco, G.P.: The LighTS tuple space framework and its
customization for context-aware applications. Int’l Journal on Web Intelligence and
Agent Systems (WAIS) 5(2) (2007)

2. Butcher, P.: A behavioural semantics for Linda-2. Software Engineering Jour-
nal 6(4), 196–204 (1991)

3. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. IEEE Internet Computing 4(4), 26–35 (2000)

4. Dyer, M., Beutel, J., Kalt, T., et al.: Deployment support network - a toolkit for
the development of WSNs. In: Langendoen, K.G., Voigt, T. (eds.) EWSN 2007.
LNCS, vol. 4373, pp. 195–211. Springer, Heidelberg (2007)

5. Fok, C.-L., Roman, G.-C., Lu, C.: Rapid development and flexible deployment of
adaptive wireless sensor network applications. In: Proc. of ICDCS, June 2005, pp.
653–662 (2005)

6. Gelernter, D., Bernstein, A.J.: Distributed communication via global buffer. In:
Proc. of PODC, pp. 10–18 (1982)

7. Handorean, R., Payton, J., Julien, C., Roman, G.-C.: Coordination middleware
supporting rapid deployment of ad hoc mobile systems. In: Proc. of ICDCS Work-
shops, May 2003, pp. 362–368 (2003)

8. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
In: Mobile Computing, vol. 353, Kluwer Academic Publishers, Dordrecht (1996)

9. Julien, C., Roman, G.-C.: EgoSpaces: Facilitating rapid development of context-
aware mobile applications. IEEE Trans. on Soft. Eng. 32(5), 281–298 (2006)

10. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations with the TOTA middleware. In: Proc. of PerCom., pp. 263–273 (2004)

11. Murphy, A.L., Picco, G.P., Roman, G.-C.: Lime: A coordination middleware sup-
porting mobility of hosts and agents. ACM TOSEM 15(3), 279–328 (2006)

12. Stovall, D., Julien, C.: Resource discovery with evolving tuples. In: Proc. of ESSPE,
September 2007, pp. 1–10 (2007)

13. Weis, T., Knoll, M., Ulbrich, A., Muhl, G., Brandle, A.: Rapid prototyping for
pervasive applications. IEEE Pervasive Computing 6(2), 76–84 (2007)

14. Weiser, M.: The computer for the 21st century. Scientific American (September 1991)

Author Index

Balasubramanian, Jaiganesh 72
Baumann, Peter 86
Beugnard, Antoine 224
Biskupski, Bartosz 126, 140
Blair, Gordon S. 112, 238

Carrez, Cyril 16
Coupaye, Thierry 106
Csorba, Máté J. 253
Cunningham, Raymond 140

David, Pierre-Charles 106

Eliassen, Frank 168

Felber, Pascal 126
Floch, Jacqueline 16
Fra, Cristina 281
Fuchs, Florian 30

Geihs, Kurt 281
Gerdes, Christoph 30
Gjørven, Eli 168
Gokhale, Aniruddha 72
Grall, Hervé 106
Groenda, Henning 1

Haase, Oliver 269
Hamann, Thomas 196
Hauck, Franz J. 182
Heegaard, Poul E. 253
Herrmann, Peter 253
Hübsch, Gerald 196

Julien, Christine 296

Kaboré, Eveline 224
Kapitza, Rüdiger 86, 182
Khan, Mohammad Ullah 281
Kollingbaum, Martin 100
Kroeger, Reinhold 44, 210

Ledoux, Thomas 106
Léger, Marc 106
Leymann, Frank 275
Lin, Shen 238
Lorenzo, Jorge 281

Martin, Daniel 275
Meier, René 126, 140

Okanda, Paul M. 112
Oudenstad, Johannes 168

Papadopoulos, George A. 281
Paspallis, Nearchos 281
Pichanaharee, Koramit 58
Prinz, Vivian 30

Rathfelder, Christoph 1
Reichle, Roland 281
Reiser, Hans P. 86, 182
Reiser, Wolfgang 269
Retkowitz, Daniel 154
Rouvoy, Romain 168
Ruppel, Peter 30

Sanders, Richard 16
Schaefer, Jan 210
Schiely, Marc 126
Schmid, Markus 44
Schmidt, Douglas C. 72
Schmidt, Holger 182
Senivongse, Twittie 58
Southall, Alan 30
Springer, Thomas 196
Stegelmann, Mark 154
Steinhauer, Sebastian 112
Stovall, Drew 296
Stynes, Jeanne 210
Sycara, Katia 100

Täıani, François 238

Vacuĺın, Roman 100
Valla, Massimo 281

Wagner, Michael 281
Wang, Nanbor 72
Wäsch, Jürgen 269
Wiesner, Kevin 100
Wutke, Daniel 275

	Title Page
	Preface
	Organization
	Table of Contents
	iSOAMM: An Independent SOA Maturity Model
	Introduction
	Related Work
	Evaluation Viewpoints
	iSOAMM Maturity Levels
	Level 1: Trial SOA
	Level 2: Integrative SOA
	Level 3: Administered SOA
	Level 4: Cooperative SOA
	Level 5: On Demand SOA

	Challenges, Benefits, and Risks
	Level 1: Trial SOA
	Level 2: Integrative SOA
	Level 3: Administered SOA
	Level 4: Cooperative SOA
	Level 5: On Demand SOA

	Validation
	Conclusion and Outlook

	Describing Component Collaboration Using Goal Sequences
	Introduction
	Semantics of Service Goals
	Service Goals and Elementary Collaborations
	Service Goals and Semantic Interfaces

	Goal Sequences
	Discussion
	Validation of Goal Sequences at Design Time and Runtime
	Goal Sequences and Safe Composition
	Goal Sequences in Service Discovery at Runtime

	Related Work
	Conclusion and Perspectives
	References

	Adaptive and Fault-Tolerant Service Composition in Peer-to-Peer Systems
	Introduction
	Service Composition Based on Interaction Between Logical Service Groups
	Basic Idea: Logical Service Groups
	Initial Service Composition
	Composite Service Execution

	Implementation
	The Service Composition Framework
	Test Environment and Example Services

	Evaluation
	Formal Analysis
	Empirical Analysis

	Conclusion

	Decentralised QoS-Management in Service Oriented Architectures
	Motivation
	Service Oriented Architectures
	Necessity for Self-management
	Decentralised Management Approach
	General Approach
	Generic Manager Architecture
	Service Managers
	Workflow Managers
	SCA Integration
	Prototypical Implementation

	Related Work
	Summary and Conclusions

	QoS-Based Service Provision Schemes and Plan Durability in Service Composition
	Introduction
	Related Work
	QoS-Based Service Provision Schemes and QoS Variability
	QoS-Based Service Provision Schemes
	QoS Variability

	Extended QoS Model
	Planning Algorithm
	Planning with EDA
	Durable Planning

	Experimental Studies
	Use of GF
	Plan Durability

	Discussion and Conclusion
	References

	Towards Middleware for Fault-Tolerance in Distributed Real-Time and Embedded Systems
	Introduction
	Objectives of the Lw-FT-RT-CORBA Effort
	System and Fault Model
	Resource-Aware Fault Recovery Challenges for Lw-RT-FT CORBA
	Limitations of FT-CORBA for DRE Systems
	Salient Features of Lw-FT-RT-CORBA

	The Design of FLARe
	Providing Efficient and Predictable System/Failure Management
	Providing Adaptive Failover Target Selection
	Providing Transparent and Predictable Failure Recovery

	Related Work
	Concluding Remarks

	Using Object Replication for Building a Dependable Version Control System
	Introduction
	Related Work
	Replication Infrastructure Based on Fragmented Objects
	Replication with Fragmented Objects in FT-$flex$
	Semantic Information and Code Generation

	Replicated Decentralized Version Control
	Background
	Basic Concepts of Git
	Design of the DiGit Version Control System
	DiGit Operations on a Local Repository
	DiGit Operations on a Distributed Repository

	Evaluation
	Lessons Learned
	Conclusions

	Recovery Mechanisms for Semantic Web Services
	Introduction
	OWL-S and Recovery
	Semantic-Enabled Recovery
	Discussion
	Related Work
	Conclusions and Future Work

	A Multi-stage Approach for Reliable Dynamic Reconfigurations of Component-Based Systems
	Introduction
	Overview of the Validation Chain
	Static Analysis with Respect to the Architecture Model
	Validation with Respect to the Target Architecture
	Execution of Reconfigurations as Transactions
	Conclusion and Future Work

	Virtual Overlays: An Approach to the Management of Competing or Collaborating Overlay Structures
	Introduction
	Background on Overlays
	Definition of Network Overlays
	Why Virtual Overlays?

	Design and Implementation of the Virtual Overlay
	Background on GRIDKIT
	Extensions on GRIDKIT to Support Virtual Overlays

	Experimental Evaluation
	A Basic Middleware Firewall
	An Enhanced Virtual Overlay

	Related Work
	Conclusion
	References

	Tree-Based Analysis of Mesh Overlays for Peer-to-Peer Streaming
	Introduction
	Related Work
	Mesh-Based P2P Streaming
	Mesh Overlay Properties
	Tree-Based View of Mesh Overlays
	Analysis
	Evaluation

	Mesh Adaptation Algorithm
	Algorithm
	Evaluation

	Conclusions

	Managing Peer-to-Peer Live Streaming Applications
	Introduction
	MeshTV Architecture
	Coordination
	Management
	Communication

	MeshTV Peer-to-Peer Protocol
	Mesh
	Bootstrap
	Gossip
	Transport

	MeshTV Evaluation
	Upload Utilisation
	Throughput
	Node Proximity

	Related Work
	Conclusions/Future Work

	Dynamic Adaptability for Smart Environments
	Introduction
	Scenario
	System Architecture
	Service Layers
	Process Requirements
	Continuous SCD-Process

	Realization
	Data Model
	Dynamic Service Composition
	Adaptive Configuration

	Tool Support
	Related Work
	Conclusion and Outlook

	Brokering Planning Metadata in a P2P Environment
	Introduction
	QuA
	Related Work
	P2P Broker
	Choice of P2P Technology
	Mapping
	Replication
	Outdated information

	Evaluation
	Distribution
	Availability
	Discussions

	Conclusions

	Adaptive Web Service Migration
	Introduction
	Related Work
	Design of Adaptive Web Service Migration
	Basic Principles of Self-adaptive Web Service Migration
	Requirements for Web Service Migration
	Logical Entities and Collaboration

	Infrastructure for Adaptive Web Service Migration
	Process of Adaptive Web Service Migration
	Development of Self-adaptive Mobile Web Services
	Coordination
	Dynamic Loading of Code
	Addressing Self-adaptive Mobile Web Services

	Example Application
	Conclusion and Future Work

	A Model-Driven Approach for Developing Adaptive Software Systems
	Introduction
	Related Work
	Design Methodology for Adaptive, Multimodal Applications
	Models
	Concept Model
	Task Model
	Abstract User Interface Model
	Functional Core Adapter Model
	Context Model

	Runtime Environment
	Validation
	Conclusion and Outlook

	Model-Based Performance Instrumentation of Distributed Applications
	Introduction
	Related Work
	Model-Based Performance Instrumentation
	Instrumentation Patterns
	UML Instrumentation Profile

	Performance Engineering Process
	Prototypical Implementation
	Case Study: Web Services
	Conclusion and Future Work

	Implementing a Data Distribution Variant with a Metamodel, Some Models and a Transformation
	Introduction and Motivation
	Communication Component: Medium
	Our Approach
	Analysis
	Automation

	Related Works
	Conclusion

	Facilitating Gossip Programming with the GossipKit Framework
	Introduction and Problem Statement
	Related Work
	GossipKit's Key Design Choices
	Application-Dependent Interfaces
	Common Interaction Pattern
	Event-Driven Architecture

	GossipKit's Architectural Overview
	API Components
	Periodic Trigger Component
	Event Handler Registry
	Event Handler Plugins
	Network Component

	Implementation
	Evaluation
	Configurability
	Reusability
	Memory Usage
	Extensibility
	Reconfigurability

	Conclusion and Future Work

	Cost-Efficient Deployment of Collaborating Components
	Introduction
	Support for Deployment Mapping
	Cross Entropy Ant System
	Application of Ant-Based Deployment Mapping
	Analysis of a Problem
	Closing Remarks

	STUNT Enhanced Java RMI
	Introduction
	STUNT Enhanced Java RMI Solution
	Communication Process
	Components

	Conclusion and Future Work

	Facilitating Complex Web Service Interactions through a Tuplespace Binding
	Introduction
	Tuplespace Binding for Web Services
	Mapping SOAP Messages to Tuples
	Mapping WS Interaction Patterns to Linda Coordination Primitives
	Conclusions

	A Comprehensive Context Modeling Framework for Pervasive Computing Systems
	Introduction
	Requirements
	Discussion of Existing Context Models
	Existing Approaches on Context Modeling
	Why Another Context Model?

	The MUSIC Context Model
	Three Layers of Abstraction
	The Conceptual Layer of the MUSIC Context Model
	Model-Driven Development

	Discussion
	Conclusions and Future Work

	Rapid Prototyping of Routing Protocols with Evolving Tuples
	Introduction
	Background
	The Evolving Tuples Model
	Evolving Tuple Format
	Evolution
	Standard Deployment Model

	A Routing Protocol
	Related Work
	Conclusions and Future Work

	Author Index

